Annick Moing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7728798/publications.pdf

Version: 2024-02-01

43973 76769 6,236 117 48 74 citations h-index g-index papers 122 122 122 7614 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theoretical and Applied Genetics, 1999, 98, 18-31.	1.8	226
2	Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics, 2002, 105, 145-159.	1.8	199
3	Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development Â. Plant Physiology, 2009, 149, 1505-1528.	2.3	199
4	Microclimate Influence on Mineral and Metabolic Profiles of Grape Berries. Journal of Agricultural and Food Chemistry, 2006, 54, 6765-6775.	2.4	188
5	Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.	1.4	163
6	1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 2006, 563, 346-352.	2.6	159
7	Quantitative metabolic profiling by 1-dimensional 1H-NMR analyses: application to plant genetics and functional genomics. Functional Plant Biology, 2004, 31, 889.	1.1	147
8	¹ H NMR, GCâ^'EI-TOFMS, and Data Set Correlation for Fruit Metabolomics: Application to Spatial Metabolite Analysis in Melon. Analytical Chemistry, 2009, 81, 2884-2894.	3.2	147
9	COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 2015, 11, 1587-1597.	1.4	140
10	1H NMR and Chemometrics To Characterize Mature Grape Berries in Four Wine-Growing Areas in Bordeaux, France. Journal of Agricultural and Food Chemistry, 2005, 53, 6382-6389.	2.4	137
11	NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. Metabolomics, 2017, 13, 36.	1.4	128
12	Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics and Genomes, 2006, 3, 1-13.	0.6	121
13	Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA. Metabolomics, 2007, 3, 273-288.	1.4	119
14	Carbon Fluxes in Mature Peach Leaves. Plant Physiology, 1992, 100, 1878-1884.	2.3	117
15	Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiologia Plantarum, 2002, 114, 259-270.	2.6	113
16	Identification of the carotenoid modifying gene <i><scp>PALE YELLOW PETAL</scp> 1</i> as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (<i><scp>S</scp>olanum lycopersicum</i>). Plant Journal, 2014, 79, 453-465.	2.8	112
17	Extensive metabolic crossâ€talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 2011, 190, 683-696.	3 . 5	111
18	Biochemical Changes during Fruit Development of Four Strawberry Cultivars. Journal of the American Society for Horticultural Science, 2001, 126, 394-403.	0.5	110

#	Article	IF	CITATIONS
19	Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicology and Environmental Safety, 2010, 73, 1965-1974.	2.9	96
20	Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control. Theoretical and Applied Genetics, 2012, 124, 1059-1077.	1.8	95
21	Compositional Changes during the Fruit Development of Two Peach Cultivars Differing in Juice Acidity. Journal of the American Society for Horticultural Science, 1998, 123, 770-775.	0.5	90
22	Fortune telling: metabolic markers of plant performance. Metabolomics, 2016, 12, 158.	1.4	89
23	Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: Consequences on fruit production. South African Journal of Botany, 2015, 97, 176-181.	1.2	88
24	Hyperpolarized NMR of plant and cancer cell extracts at natural abundance. Analyst, The, 2015, 140, 5860-5863.	1.7	87
25	An inter-laboratory comparison demonstrates that [1H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics, 2010, 6, 263-273.	1.4	86
26	Plant metabolism as studied by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 2017, 102-103, 61-97.	3.9	85
27	Metabolomics and fish nutrition: a review in the context of sustainable feed development. Reviews in Aquaculture, 2020, 12, 261-282.	4.6	84
28	Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany, 2012, 63, 4901-4917.	2.4	82
29	Phloem loading in peach: Symplastic or apoplastic?. Physiologia Plantarum, 1997, 101, 489-496.	2.6	81
30	Plant Metabolomics and Its Potential for Systems Biology Research. Methods in Enzymology, 2011, 500, 299-336.	0.4	78
31	Putting primary metabolism into perspective to obtain better fruits. Annals of Botany, 2018, 122, 1-21.	1.4	77
32	Sucrose, Glucose, and Fructose Extraction in Aqueous Carrot Root Extracts Prepared at Different Temperatures by Means of Direct NMR Measurements. Journal of Agricultural and Food Chemistry, 2006, 54, 4681-4686.	2.4	75
33	Metabolic acclimation to hypoxia revealed by metabolite gradients in melon fruit. Journal of Plant Physiology, 2010, 167, 242-245.	1.6	75
34	Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics, 2013, 9, 57-77.	1.4	74
35	The Grapevine fleshless berry Mutation. A Unique Genotype to Investigate Differences between Fleshy and Nonfleshy Fruit. Plant Physiology, 2006, 140, 537-547.	2.3	72
36	Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Functional Plant Biology, 1998, 25, 197.	1.1	71

#	Article	IF	Citations
37	Respiration climacteric in tomato fruits elucidated by constraintâ€based modelling. New Phytologist, 2017, 213, 1726-1739.	3.5	67
38	Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry, 2014, 99, 61-72.	1.4	66
39	Role of phosphoenol pyruvate carboxylase in organic acid accumulation during peach fruit development. Physiologia Plantarum, 2000, 108, 1-10.	2.6	63
40	Metabolomic profiling in tomato reveals diel compositional changes in fruit affected by source–sink relationships. Journal of Experimental Botany, 2015, 66, 3391-3404.	2.4	62
41	Sugar Import and Phytopathogenicity of Spiroplasma citri: Glucose and Fructose Play Distinct Roles. Molecular Plant-Microbe Interactions, 2005, 18, 33-42.	1.4	60
42	Grape berry development : A review. Oeno One, 2016, 36, 109.	0.7	60
43	Highly Repeatable Dissolution Dynamic Nuclear Polarization for Heteronuclear NMR Metabolomics. Analytical Chemistry, 2016, 88, 6179-6183.	3.2	57
44	MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles. BMC Plant Biology, 2011, 11, 104.	1.6	54
45	Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biology, 2009, 9, 59.	1.6	53
46	Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Molecular Breeding, 2011, 28, 667-682.	1.0	53
47	Correlation Network Analysis reveals a sequential reorganization of metabolic and transcriptional states during germination and gene-metabolite relationships in developing seedlings of Arabidopsis. BMC Systems Biology, 2010, 4, 62.	3.0	52
48	Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit. Metabolomics, 2009, 5, 183-198.	1.4	51
49	Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR. Metabolomics, 2015, 11, 1231-1242.	1.4	50
50	nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data. Analytical Chemistry, 2018, 90, 649-656.	3.2	50
51	Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. Journal of Plant Physiology, 2011, 168, 242-252.	1.6	48
52	(Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula. PLoS Pathogens, 2012, 8, e1002471.	2.1	48
53	Organic Acid Metabolism in Roots of Various Grapevine (Vitis) Rootstocks Submitted to Iron Deficiency and Bicarbonate Nutrition. Journal of Plant Nutrition, 2003, 26, 2165-2176.	0.9	47
54	Hyperpolarized NMR Metabolomics at Natural ¹³ C Abundance. Analytical Chemistry, 2020, 92, 14867-14871.	3.2	44

#	Article	IF	Citations
55	A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics, 2012, 8, 771-783.	1.4	43
56	Modeling Carbon Export Out of Mature Peach Leaves. Plant Physiology, 1994, 106, 591-600.	2.3	42
57	Carbon and nitrogen partitioning in peach/plum grafts. Tree Physiology, 1992, 10, 81-92.	1.4	38
58	Optimizing 1D 1H-NMR profiling of plant samples for high throughput analysis: extract preparation, standardization, automation and spectra processing. Metabolomics, 2019, 15, 28.	1.4	37
59	Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. Journal of Experimental Botany, 2020, 71, 5823-5836.	2.4	35
60	Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites, 2020, 10, 121.	1.3	35
61	Carotenoid profiling of tropical root crop chemotypes from Vanuatu, South Pacific. Journal of Food Composition and Analysis, 2010, 23, 763-771.	1.9	32
62	Maize metabolome and proteome responses to controlled cold stress partly mimic earlyâ€sowing effects in the field and differ from those of Arabidopsis. Plant, Cell and Environment, 2021, 44, 1504-1521.	2.8	32
63	Partitioning of photosynthetic carbohydrates in leaves of salt-stressed olive plants. Functional Plant Biology, 1998, 25, 571.	1,1	31
64	An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. Comptes Rendus - Biologies, 2009, 332, 1007-1021.	0.1	30
65	Growth and the composition and transport of carbohydrate in compatible and incompatible peach/plum grafts. Tree Physiology, 1987, 3, 345-354.	1.4	27
66	Vigour and non-structural carbohydrates in young prune trees. Scientia Horticulturae, 1992, 51, 197-211.	1.7	27
67	1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets. PLoS ONE, 2018, 13, e0196102.	1.1	27
68	Integrative Metabolomics for Assessing the Effect of Insect (Hermetia illucens) Protein Extract on Rainbow Trout Metabolism. Metabolites, 2020, 10, 83.	1.3	27
69	Transcriptional and Metabolic Adjustments in ADP-Glucose Pyrophosphorylase-Deficient <i>bt2</i> Maize Kernels Â. Plant Physiology, 2008, 146, 1553-1570.	2.3	25
70	Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato. Frontiers in Plant Science, 2017, 8, 988.	1.7	25
71	Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure. Applied and Environmental Microbiology, 2018, 84, .	1.4	25
72	An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data. Analytical and Bioanalytical Chemistry, 2013, 405, 5049-5061.	1.9	24

#	Article	lF	Citations
73	The peach HECATE3-like gene FLESHY plays a double role during fruit development. Plant Molecular Biology, 2016, 91, 97-114.	2.0	24
74	Development and mapping of peach candidate genes involved in fruit quality and their transferability and potential use in other Rosaceae species. Tree Genetics and Genomes, 2010, 6, 995-1012.	0.6	23
75	Honeydew feeding increased the longevity of two egg parasitoids of the pine processionary moth. Journal of Applied Entomology, 2011, 135, 184-194.	0.8	23
76	Is There a Relation between Changes in Osmolarity of Cherry Fruit Flesh or Skin and Fruit Cracking Susceptibility?. Journal of the American Society for Horticultural Science, 2004, 129, 635-641.	0.5	23
77	Phloem loading in peach: Symplastic or apoplastic?. Physiologia Plantarum, 1997, 101, 489-496.	2.6	22
78	Phosphoenolpyruvate carboxylase during grape berry development: protein level, enzyme activity and regulation. Functional Plant Biology, 2000, 27, 221.	1.1	22
79	Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach. Journal of Experimental Botany, 2013, 64, 5737-5752.	2.4	20
80	Omics Data Reveal Putative Regulators of Einkorn Grain Protein Composition under Sulfur Deficiency. Plant Physiology, 2020, 183, 501-516.	2.3	20
81	Biochemical Basis of Low Fruit Quality of Prunus davidiana, a Pest and Disease Resistance Donor for Peach Breeding. Journal of the American Society for Horticultural Science, 2003, 128, 55-62.	0.5	20
82	Characterizing alternative feeds for rainbow trout (O. mykiss) by 1H NMR metabolomics. Metabolomics, 2018, 14, 155.	1.4	18
83	NMR-Based Tissular and Developmental Metabolomics of Tomato Fruit. Metabolites, 2019, 9, 93.	1.3	18
84	Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in <i>Arabidopsis</i> seedlings. Biochemical Journal, 2011, 437, 505-513.	1.7	17
85	Metabolomic characterization of sunflower leaf allows discriminating genotype groups or stress levels with a minimal set of metabolic markers. Metabolomics, 2019, 15, 56.	1.4	17
86	The Tomato Guanylate-Binding Protein SIGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State. Plant Cell, 2020, 32, 3188-3205.	3.1	17
87	Precautions for Harvest, Sampling, Storage, and Transport of Crop Plant Metabolomics Samples. Methods in Molecular Biology, 2011, 860, 51-63.	0.4	17
88	Maturation of nematode-induced galls in Medicago truncatula is related to water status and primary metabolism modifications. Plant Science, 2015, 232, 77-85.	1.7	15
89	Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding. Metabolomics, 2018, 14, 132.	1.4	15
90	Putative imbalanced amino acid metabolism in rainbow trout long term fed a plant-based diet as revealed by ¹ H-NMR metabolomics. Journal of Nutritional Science, 2021, 10, e13.	0.7	15

#	Article	IF	CITATIONS
91	Growth, cambial activity and phloem structure in compatible and incompatible peach/plum grafts. Tree Physiology, 1988, 4, 347-359.	1.4	14
92	Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana. Plant Science, 2007, 172, 265-272.	1.7	14
93	High-Resolution 1H-NMR Spectroscopy and Beyond to Explore Plant Metabolome. Advances in Botanical Research, 2013, , 1-66.	0.5	14
94	Variability in Sorbitol: Sucrose Ratio in Mature Leaves of Different Prunus Species. Journal of the American Society for Horticultural Science, 1997, 122, 83-90.	0.5	14
95	Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. Annals of Botany, 2020, 126, 455-470.	1.4	13
96	Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism. Frontiers in Plant Science, 2019, 10, 836.	1.7	12
97	The GMO90+ Project: Absence of Evidence for Biologically Meaningful Effects of Genetically Modified Maize-based Diets on Wistar Rats After 6-Months Feeding Comparative Trial. Toxicological Sciences, 2019, 168, 315-338.	1.4	12
98	Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fineâ€tuned during fruit development. New Phytologist, 2021, 230, 1489-1502.	3.5	12
99	A Systems Biology Study in Tomato Fruit Reveals Correlations between the Ascorbate Pool and Genes Involved in Ribosome Biogenesis, Translation, and the Heat-Shock Response. Frontiers in Plant Science, 2018, 9, 137.	1.7	11
100	Proton-NMR Metabolomics of Rainbow Trout Fed a Plant-Based Diet Supplemented with Graded Levels of a Protein-Rich Yeast Fraction Reveal Several Metabolic Processes Involved in Growth. Journal of Nutrition, 2020, 150, 2268-2277.	1.3	11
101	Characterization of GMO or glyphosate effects on the composition of maize grain and maize-based diet for rat feeding. Metabolomics, 2018, 14, 36.	1.4	9
102	Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. Frontiers in Plant Science, 2019, 10, 594.	1.7	9
103	Metabolite Fruit Profile Is Altered in Response to Source–Sink Imbalance and Can Be Used as an Early Predictor of Fruit Quality in Nectarine. Frontiers in Plant Science, 2020, 11, 604133.	1.7	9
104	Carbon and nitrogen reserves in prune tree shoots: effect of training system. Scientia Horticulturae, 1994, 57, 99-110.	1.7	8
105	Developmental metabolomics to decipher and improve fleshy fruit quality. Advances in Botanical Research, 2021, 98, 3-34.	0.5	6
106	From fruit growth to ripening in plantain: a careful balance between carbohydrate synthesis and breakdown. Journal of Experimental Botany, 2022, 73, 4832-4849.	2.4	5
107	Rat feeding trials: A comprehensive assessment of contaminants in both genetically modified maize and resulting pellets. Food and Chemical Toxicology, 2018, 121, 573-582.	1.8	4
108	¹ H-NMR metabolic profiling of wines from three cultivans, three soil types and two contrasting vintages. Oeno One, 2016, 41, 103.	0.7	4

#	Article	lF	CITATIONS
109	PeakForest: a multi-platform digital infrastructure for interoperable metabolite spectral data and metadata management. Metabolomics, 2022, 18, .	1.4	4
110	MRSI vs CEST MRI to understand tomato metabolism in ripening fruit: is there a better contrast?. Analytical and Bioanalytical Chemistry, 2021, 413, 1251-1257.	1.9	3
111	Critical assessment of metabolism and related growth and quality traits in trout fed spirulina-supplemented plant-based diets. Aquaculture, 2022, 553, 738033.	1.7	3
112	New Opportunities in Metabolomics and Biochemical Phenotyping for Plant Systems Biology. , 2012, , .		2
113	Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently. BioMetals, 2015, 28, 997-1007.	1.8	2
114	Special Issue on "Fruit Metabolism and Metabolomics― Metabolites, 2020, 10, 230.	1.3	2
115	Leaf metabolomic data of eight sunflower lines and their sixteen hybrids under water deficit. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 42.	0.6	2
116	Variations saisonniÃ"res des glucides de réserve chez le prunier: relations avec la vigueur. Acta Botanica Gallica, 1993, 140, 443-447.	0.9	0
117	Large scale studies of the influence of GMO-based corn diet after 6 months of consumption in Wistar rats. Toxicology Letters, 2017, 280, S106.	0.4	0