
Darren R Hocking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7728533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing IQ in adolescents with mild to moderate cerebral palsy using the WISC-V. Clinical Neuropsychologist, 2022, 36, 1767-1786.	1.5	7
2	Feasibility of a virtual reality-based exercise intervention and low-cost motion tracking method for estimation of motor proficiency in youth with autism spectrum disorder. Journal of NeuroEngineering and Rehabilitation, 2022, 19, 1.	2.4	37
3	Functional play in young children with autism and Williams syndrome: A cross-syndrome comparison. Child Neuropsychology, 2021, 27, 125-149.	0.8	11
4	WISC-V motor-free cognitive profile and predictive factors in adolescents with cerebral palsy. Research in Developmental Disabilities, 2021, 113, 103934.	1.2	3
5	Delineating the Relationships Between Motor, Cognitive-Executive and Psychiatric Symptoms in Female FMR1 Premutation Carriers. Frontiers in Psychiatry, 2021, 12, 742929.	1.3	1
6	Motor functioning in developmental psychopathology: A review of autism as an example context. Research in Developmental Disabilities, 2020, 105, 103739.	1.2	9
7	Working memory is a core executive function supporting dual-task locomotor performance across childhood and adolescence. Journal of Experimental Child Psychology, 2020, 197, 104869.	0.7	12
8	Reduced caudate volume and cognitive slowing in men at risk of fragile X-associated tremor ataxia syndrome. Brain Imaging and Behavior, 2019, 13, 1128-1134.	1.1	6
9	Shared and syndromeâ€specific adaptive difficulties in preschoolers with Williams syndrome and autism spectrum disorder: a crossâ€syndrome study. Journal of Intellectual Disability Research, 2019, 63, 1305-1311.	1.2	8
10	Total and Regional White Matter Lesions Are Correlated With Motor and Cognitive Impairments in Carriers of the FMR1 Premutation. Frontiers in Neurology, 2019, 10, 832.	1.1	13
11	The development of the size–weight illusion in children coincides with the development of nonverbal cognition rather than motor skills. Journal of Experimental Child Psychology, 2019, 184, 48-64.	0.7	7
12	Do Active Video Games Improve Motor Function in People With Developmental Disabilities? A Meta-analysis of Randomized Controlled Trials. Archives of Physical Medicine and Rehabilitation, 2019, 100, 769-781.	0.5	19
13	Evidence for Training-Dependent Structural Neuroplasticity in Brain-Injured Patients: A Critical Review. Neurorehabilitation and Neural Repair, 2018, 32, 99-114.	1.4	35
14	Delineation of a spatial working memory profile using a non-verbal eye-tracking paradigm in young children with autism and Williams syndrome. Child Neuropsychology, 2018, 24, 469-489.	0.8	6
15	Attention to novelty versus repetition: Contrasting habituation profiles in Autism and Williams syndrome. Developmental Cognitive Neuroscience, 2018, 29, 54-60.	1.9	44
16	Intranasal oxytocin, social cognition and neurodevelopmental disorders: A meta-analysis. Psychoneuroendocrinology, 2018, 87, 9-19.	1.3	109
17	Reduced Motor Interference in Preschoolers with Autism Spectrum Disorder and Williams Syndrome. Developmental Neuropsychology, 2018, 43, 751-763.	1.0	2
18	Brief Report: The Impact of Sensory Hypersensitivity and Intolerance of Uncertainty on Anxiety in Williams Syndrome. Journal of Autism and Developmental Disorders, 2018, 48, 3958-3964.	1.7	17

DARREN R HOCKING

#	Article	IF	CITATIONS
19	Cerebellar volume mediates the relationship between FMR1 mRNA levels and voluntary step initiation in males with the premutation. Neurobiology of Aging, 2017, 50, 5-12.	1.5	12
20	The social nature of overimitation: Insights from Autism and Williams syndrome. Cognition, 2017, 161, 10-18.	1,1	24
21	Social Attention, Joint Attention and Sustained Attention in Autism Spectrum Disorder and Williams Syndrome: Convergences and Divergences. Journal of Autism and Developmental Disorders, 2017, 47, 1866-1877.	1.7	58
22	What is the Nature of Motor Impairments in Autism, Are They Diagnostically Useful, and What Are the Implications for Intervention?. Current Developmental Disorders Reports, 2017, 4, 19-27.	0.9	19
23	Selective subcortical contributions to gait impairments in males with the <i>FMR1</i> premutation. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 188-190.	0.9	6
24	Verbal labels increase the salience of novel objects for preschoolers with typical development and Williams syndrome, but not in autism. Journal of Neurodevelopmental Disorders, 2016, 8, 46.	1.5	11
25	Social affiliation motives modulate spontaneous learning in Williams syndrome but not in autism. Molecular Autism, 2016, 7, 40.	2.6	42
26	Prevalence and predictors of subjective memory complaints in adult male carriers of the <i>FMR1</i> premutation. Clinical Neuropsychologist, 2016, 30, 834-848.	1.5	5
27	Graduate-entry medical students: older and wiser but not less distressed. Australasian Psychiatry, 2016, 24, 88-92.	0.4	24
28	Williams Syndrome. , 2016, , 271-290.		1
29	Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiology of Aging, 2015, 36, 1400-1408.	1.5	10
29 30	Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiology of Aging, 2015, 36, 1400-1408. Novel methylation markers of the dysexecutive-psychiatric phenotype in <i>FMR1</i> premutation women. Neurology, 2015, 84, 1631-1638.	1.5 1.5	
	the premutation. Neurobiology of Aging, 2015, 36, 1400-1408. Novel methylation markers of the dysexecutive-psychiatric phenotype in <i>FMR1</i>		10
30	the premutation. Neurobiology of Aging, 2015, 36, 1400-1408. Novel methylation markers of the dysexecutive-psychiatric phenotype in <i>FMR1</i> premutation women. Neurology, 2015, 84, 1631-1638. Preliminary evidence of an effect of cerebellar volume on postural sway in <i>FMR1</i> premutation	1.5	10 32
30 31	 the premutation. Neurobiology of Aging, 2015, 36, 1400-1408. Novel methylation markers of the dysexecutive-psychiatric phenotype in <i>FMR1</i> premutation women. Neurology, 2015, 84, 1631-1638. Preliminary evidence of an effect of cerebellar volume on postural sway in <i>FMR1</i> premutation males. Genes, Brain and Behavior, 2015, 14, 251-259. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over 	1.5	10 32 23
30 31 32	 the premutation. Neurobiology of Aging, 2015, 36, 1400-1408. Novel methylation markers of the dysexecutive-psychiatric phenotype in <i>FMR1</i> premutation women. Neurology, 2015, 84, 1631-1638. Preliminary evidence of an effect of cerebellar volume on postural sway in <i>FMR1</i> premutation males. Genes, Brain and Behavior, 2015, 14, 251-259. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 47-56. Characterising the Profile of Everyday Executive Functioning and Relation to IQ in Adults with 	1.5 1.1 4.9	10 32 23 39
30 31 32 33	 the premutation. Neurobiology of Aging, 2015, 36, 1400-1408. Novel methylation markers of the dysexecutive-psychiatric phenotype in <i>FMR1</i> premutation women. Neurology, 2015, 84, 1631-1638. Preliminary evidence of an effect of cerebellar volume on postural sway in <i>FMR1</i> premutation males. Genes, Brain and Behavior, 2015, 14, 251-259. Intercomparison of clumping index estimates from POLDER, MODIS, and MISR satellite data over reference sites. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 47-56. Characterising the Profile of Everyday Executive Functioning and Relation to IQ in Adults with Williams Syndrome: Is the BRIEF Adult Version a Valid Rating Scale?. PLoS ONE, 2015, 10, e0137628. Sensitivity of Spatiotemporal Gait Parameters in Measuring Disease Severity in Friedreich Ataxia. 	1.5 1.1 4.9 1.1	10 32 23 39 16

DARREN R HOCKING

#	Article	IF	CITATIONS
37	Movement Planning and Online Control in Multiple Sclerosis. Cognitive and Behavioral Neurology, 2014, 27, 139-147.	0.5	13
38	Gait profiles as indicators of domain-specific impairments in executive control across neurodevelopmental disorders. Research in Developmental Disabilities, 2014, 35, 203-214.	1.2	22
39	The Interplay Between Anxiety and Social Functioning in Williams Syndrome. Journal of Autism and Developmental Disorders, 2014, 44, 1220-1229.	1.7	52
40	Understanding the Neuropsychiatric Phenotype of Fragile X-Associated Tremor Ataxia Syndrome: a Systematic Review. Neuropsychology Review, 2014, 24, 491-513.	2.5	15
41	The cognitive neuropsychological phenotype of carriers of the FMR1 premutation. Journal of Neurodevelopmental Disorders, 2014, 6, 28.	1.5	74
42	Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiology of Aging, 2014, 35, 2179.e7-2179.e13.	1.5	21
43	Saccade reprogramming in Friedreich ataxia reveals impairments in the cognitive control of saccadic eye movement. Brain and Cognition, 2014, 87, 161-167.	0.8	6
44	Exploring inhibitory deficits in female premutation carriers of fragile X syndrome: Through eye movements. Brain and Cognition, 2014, 85, 201-208.	0.8	27
45	Linking social behaviour and anxiety to attention to emotional faces in Williams syndrome. Research in Developmental Disabilities, 2013, 34, 4608-4616.	1.2	21
46	Cognitive-motor interference during postural control indicates at-risk cerebellar profiles in females with the FMR1 premutation. Behavioural Brain Research, 2013, 253, 329-336.	1.2	27
47	Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neuroscience and Biobehavioral Reviews, 2013, 37, 522-547.	2.9	45
48	The interplay between executive control and motor functioning in Williams syndrome. Developmental Science, 2013, 16, 428-442.	1.3	13
49	Selective spatial processing deficits in an at-risk subgroup of the fragile X premutation. Brain and Cognition, 2012, 79, 39-44.	0.8	32
50	A kinematic analysis of visually-guided movement in Williams syndrome. Journal of the Neurological Sciences, 2011, 301, 51-58.	0.3	21
51	Association of the DAT1 genotype with inattentive behavior is mediated by reading ability in a general population sample. Brain and Cognition, 2011, 77, 453-458.	0.8	10
52	The Fitts task reveals impairments in planning and online control of movement in Friedreich ataxia: reduced cerebellar-cortico connectivity?. Neuroscience, 2011, 192, 382-390.	1.1	29
53	Gait adaptation during obstacle crossing reveals impairments in the visual control of locomotion in Williams syndrome. Neuroscience, 2011, 197, 320-329.	1.1	11
54	Selective executive markers of at-risk profiles associated with the fragile X premutation. Neurology, 2011, 77, 618-622.	1.5	50

DARREN R HOCKING

#	Article	IF	CITATIONS
55	SPECIAL—Savanna Patterns of Energy and Carbon Integrated across the Landscape. Bulletin of the American Meteorological Society, 2011, 92, 1467-1485.	1.7	52
56	Ocular Motor Fixation Deficits in Friedreich Ataxia. Cerebellum, 2010, 9, 411-418.	1.4	27
57	Effects of external and internal cues on gait function in Williams syndrome. Journal of the Neurological Sciences, 2010, 291, 57-63.	0.3	17
58	Gait function in adults with Williams syndrome. Experimental Brain Research, 2009, 192, 695-702.	0.7	25
59	Fronto-parietal and cerebellar contributions to motor dysfunction in Williams syndrome: A review and future directions. Neuroscience and Biobehavioral Reviews, 2008, 32, 497-507.	2.9	34