Torben Daeneke

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7728076/torben-daeneke-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

120
papers8,129
citations46
h-index89
g-index130
ext. papers9,797
ext. citations12.8
avg, IF6.16
L-index

#	Paper	IF	Citations
120	Applications of liquid metals in nanotechnology <i>Nanoscale Horizons</i> , 2022 ,	10.8	7
119	Liquid metals: an ideal platform for the synthesis of two-dimensional materials <i>Chemical Society Reviews</i> , 2022 ,	58.5	5
118	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals 2022 , 1, 158-1	69	4
117	Liquid metal derived MOF functionalized nanoarrays with ultra-wideband electromagnetic absorption. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 1852-1865	9.3	12
116	Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells (Adv. Mater. Interfaces 7/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270035	4.6	О
115	Integrated liquid metal based two-dimensional NiCAl2O3 nanoarrays on enhancing electromagnetic wave absorption performance. <i>Ceramics International</i> , 2022 , 48, 10066-10078	5.1	3
114	2D Palladium Sulphate for Visible-Light-Driven Optoelectronic Reversible Gas Sensing at Room Temperature. <i>Small Science</i> , 2022 , 2, 2100097		5
113	Liquid-Metal-Enabled Mechanical-Energy-Induced CO Conversion. <i>Advanced Materials</i> , 2021 , e2105789	24	7
112	High- 2D SbO Made Using a Substrate-Independent and Low-Temperature Liquid-Metal-Based Process. <i>ACS Nano</i> , 2021 , 15, 16067-16075	16.7	8
111	Bismuth telluride topological insulator synthesized using liquid metal alloys: Test of NO2 selective sensing. <i>Applied Materials Today</i> , 2021 , 22, 100954	6.6	10
110	High-mobility p-type semiconducting two-dimensional ETeO2. <i>Nature Electronics</i> , 2021 , 4, 277-283	28.4	23
109	The catalytic decomposition of carbon dioxide on zinc-exchanged Y-zeolite at low temperatures. Journal of Chemical Technology and Biotechnology, 2021 , 96, 2675-2680	3.5	
108	Self-Deposition of 2D Molybdenum Sulfides on Liquid Metals. <i>Advanced Functional Materials</i> , 2021 , 31, 2005866	15.6	22
107	Ultrathin Ga O Glass: A Large-Scale Passivation and Protection Material for Monolayer WS. <i>Advanced Materials</i> , 2021 , 33, e2005732	24	19
106	Polyphenol-Induced Adhesive Liquid Metal Inks for Substrate-Independent Direct Pen Writing. <i>Advanced Functional Materials</i> , 2021 , 31, 2007336	15.6	37
105	Unique surface patterns emerging during solidification of liquid metal alloys. <i>Nature Nanotechnology</i> , 2021 , 16, 431-439	28.7	46
104	Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 11815-11826	7.1	7

(2020-2021)

103	Printable Single-Unit-Cell-Thick Transparent Zinc-Doped Indium Oxides with Efficient Electron Transport Properties. <i>ACS Nano</i> , 2021 , 15, 4045-4053	16.7	15	
102	Low dimensional materials for glucose sensing. <i>Nanoscale</i> , 2021 , 13, 11017-11040	7.7	6	
101	The Impact of Water on the Lateral Nanostructure of a Deep Eutectic SolventBolid Interface. <i>Australian Journal of Chemistry</i> , 2021 ,	1.2	2	
100	An exploration into two-dimensional metal oxides, and other 2D materials, synthesised via liquid metal printing and transfer techniques. <i>Dalton Transactions</i> , 2021 , 50, 7513-7526	4.3	12	
99	Influence of direct deposition of dielectric materials on the optical response of monolayer WS2. <i>Applied Physics Letters</i> , 2021 , 119, 133106	3.4	2	
98	Gallium nitride formation in liquid metal sonication. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16593-16	6 9 2	13	
97	Nucleation and Growth of Polyaniline Nanofibers onto Liquid Metal Nanoparticles. <i>Chemistry of Materials</i> , 2020 , 32, 4808-4819	9.6	30	
96	Bi-Sn Catalytic Foam Governed by Nanometallurgy of Liquid Metals. <i>Nano Letters</i> , 2020 , 20, 4403-4409	11.5	27	
95	Liquid-Metal-Templated Synthesis of 2D Graphitic Materials at Room Temperature. <i>Advanced Materials</i> , 2020 , 32, e2001997	24	44	
94	Atomically thin TiO nanosheets synthesized using liquid metal chemistry. <i>Chemical Communications</i> , 2020 , 56, 4914-4917	5.8	17	
93	Liquid Metal-Based Route for Synthesizing and Tuning Gas-Sensing Elements. ACS Sensors, 2020, 5, 117	7 ₉ 1 <u>1</u> 189	23	
92	Combustion Power in your Pocket: A Case for Portable Pyroelectric Energy Conversion. <i>Matter</i> , 2020 , 3, 20-22	12.7	1	
91	Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. <i>Nature Communications</i> , 2020 , 11, 3449	17.4	69	
90	Peculiar piezoelectricity of atomically thin planar structures. <i>Nanoscale</i> , 2020 , 12, 2875-2901	7.7	25	
89	Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. <i>Nature Electronics</i> , 2020 , 3, 51-58	28.4	73	
88	Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications. <i>Advanced Science</i> , 2020 , 7, 1902913	13.6	79	
87	Antibacterial Liquid Metals: Biofilm Treatment Magnetic Activation. ACS Nano, 2020, 14, 802-817	16.7	83	
86	Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. <i>Materials Horizons</i> , 2020 , 7, 827-834	14.4	19	

85	Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 10776-10787	7.3	11
84	Two-Step Synthesis of Large-Area 2D Bi2S3 Nanosheets Featuring High In-Plane Anisotropy. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2001131	4.6	12
83	Liquid Metals in Catalysis for Energy Applications. <i>Joule</i> , 2020 , 4, 2290-2321	27.8	32
82	Nanoscale Probing of Cholesterol-Rich Domains in Single Bilayer Dimyristoyl-Phosphocholine Membranes Using Near-Field Spectroscopic Imaging. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 947	76 :9 48	4 ³
81	Ultra-thin lead oxide piezoelectric layers for reduced environmental contamination using a liquid metal-based process. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19434-19443	13	14
80	Emergence of Liquid Metals in Nanotechnology. ACS Nano, 2019, 13, 7388-7395	16.7	169
79	Liquid metals for tuning gas sensitive layers. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6375-6382	7.1	31
78	Investigation of the surface of Ga?Sn?Zn eutectic alloy by the characterisation of oxide nanofilms obtained by the touch-printing method. <i>Nanomaterials</i> , 2019 , 9,	5.4	3
77	Room temperature CO reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. <i>Nature Communications</i> , 2019 , 10, 865	17.4	100
76	Liquid metal coreBhell structures functionalised via mechanical agitation: the example of Field metal. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17876-17887	13	26
75	Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites. <i>Composites Science and Technology</i> , 2019 , 181, 107708	8.6	11
74	Atomically Thin Ga2S3 from Skin of Liquid Metals for Electrical, Optical, and Sensing Applications. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4665-4672	5.6	37
73	Self-Limiting Galvanic Growth of MnO2 Monolayers on a Liquid Metal Applied to Photocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1901649	15.6	81
72	Exciton-Driven Chemical Sensors Based on Excitation-Dependent Photoluminescent Two-Dimensional SnS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 42462-42468	9.5	24
71	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. <i>Nature Communications</i> , 2019 , 10, 4645	17.4	39
70	2D SnO/In2O3 van der Waals Heterostructure Photodetector Based on Printed Oxide Skin of Liquid Metals. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900007	4.6	42
69	Wafer-Sized Ultrathin Gallium and Indium Nitride Nanosheets through the Ammonolysis of Liquid Metal Derived Oxides. <i>Journal of the American Chemical Society</i> , 2019 , 141, 104-108	16.4	62
68	Liquid metals: fundamentals and applications in chemistry. Chemical Society Reviews, 2018, 47, 4073-41	- 1 1 8.5	432

(2017-2018)

67	Degenerately Hydrogen Doped Molybdenum Oxide Nanodisks for Ultrasensitive Plasmonic Biosensing. <i>Advanced Functional Materials</i> , 2018 , 28, 1706006	15.6	84
66	Evolution of 2D tin oxides on the surface of molten tin. <i>Chemical Communications</i> , 2018 , 54, 2102-2105	5.8	17
65	BiO monolayers from elemental liquid bismuth. <i>Nanoscale</i> , 2018 , 10, 15615-15623	7.7	36
64	Exploring electric field assisted van der Waals weakening of stratified crystals. <i>Applied Materials Today</i> , 2018 , 12, 359-365	6.6	2
63	Liquid Phase Acoustic Wave Exfoliation of Layered MoS2: Critical Impact of Electric Field in Efficiency. <i>Chemistry of Materials</i> , 2018 , 30, 5593-5601	9.6	27
62	Two dimensional PbMoO4: A photocatalytic material derived from a naturally non-layered crystal. <i>Nano Energy</i> , 2018 , 49, 237-246	17.1	37
61	Magnetic noise from ultrathin abrasively deposited materials on diamond. <i>Physical Review Materials</i> , 2018 , 2,	3.2	9
60	Laser exposure induced alteration of WS 2 monolayers in the presence of ambient moisture. <i>2D Materials</i> , 2018 , 5, 015013	5.9	26
59	Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts. <i>Nano-Micro Letters</i> , 2018 , 10, 23	19.5	182
58	Exfoliation Behavior of van der Waals Strings: Case Study of BiS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 42603-42611	9.5	23
57	Green Synthesis of Low-Dimensional Aluminum Oxide Hydroxide and Oxide Using Liquid Metal Reaction Media: Ultrahigh Flux Membranes. <i>Advanced Functional Materials</i> , 2018 , 28, 1804057	15.6	51
56	Printing two-dimensional gallium phosphate out of liquid metal. <i>Nature Communications</i> , 2018 , 9, 3618	17.4	70
55	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. <i>Nature Communications</i> , 2017 , 8, 14482	17.4	172
54	Patterned films from exfoliated two-dimensional transition metal dichalcogenides assembled at a liquid I quid interface. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6937-6944	7.1	10
53	Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting. <i>ACS Nano</i> , 2017 , 11, 6782-6794	16.7	38
52	Highly active two dimensional ⊞MoO3☑ for the electrocatalytic hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24223-24231	13	118
51	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. <i>ACS Nano</i> , 2017 , 11, 10974-10983	16.7	80
50	A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. <i>Science</i> , 2017 , 358, 332-335	33.3	384

49	Sonication-Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry. <i>Advanced Functional Materials</i> , 2017 , 27, 1702295	15.6	78
48	Molybdenum Oxides - From Fundamentals to Functionality. <i>Advanced Materials</i> , 2017 , 29, 1701619	24	298
47	Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO. <i>Nanoscale</i> , 2017 , 9, 19162-19175	7.7	61
46	A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid. <i>Nano Letters</i> , 2017 , 17, 7831-7838	11.5	67
45	Two dimensional tungsten oxide nanosheets with unprecedented selectivity and sensitivity to NO2 2017 ,		1
44	Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: A novel SERS sensing platform. <i>Sensors and Actuators B: Chemical</i> , 2016 , 223, 52-58	8.5	15
43	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS nanosheets. <i>Nanoscale</i> , 2016 , 8, 16276-16283	7.7	46
42	Liquid Exfoliation of Layered Transition Metal Dichalcogenides for Biological Applications. <i>Current Protocols in Chemical Biology</i> , 2016 , 8, 97-108	1.8	13
41	Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes. <i>ACS Applied Materials & District Research</i> , 2016 , 8, 3482-93	9.5	91
40	Intercalated 2D MoS2 Utilizing a Simulated Sun Assisted Process: Reducing the HER Overpotential. Journal of Physical Chemistry C, 2016 , 120, 2447-2455	3.8	48
39	Exfoliation of Quasi-Stratified Bi2S3 Crystals into Micron-Scale Ultrathin Corrugated Nanosheets. <i>Chemistry of Materials</i> , 2016 , 28, 8942-8950	9.6	22
38	Ionic imbalance induced self-propulsion of liquid metals. <i>Nature Communications</i> , 2016 , 7, 12402	17.4	116
37	High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes. <i>Advanced Functional Materials</i> , 2016 , 26, 91-100	15.6	140
36	Enhanced quantum efficiency from a mosaic of two dimensional MoS2 formed onto aminosilane functionalised substrates. <i>Nanoscale</i> , 2016 , 8, 12258-66	7.7	15
35	Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. <i>NPG Asia Materials</i> , 2016 , 8, e305-e305	10.3	43
34	Two dimensional and layered transition metal oxides. <i>Applied Materials Today</i> , 2016 , 5, 73-89	6.6	313
33	2D WS2/carbon dot hybrids with enhanced photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13563-13571	13	99
32	Reductive exfoliation of substoichiometric MoS2 bilayers using hydrazine salts. <i>Nanoscale</i> , 2016 , 8, 152.	5 2.7 61	22

(2013-2015)

31	Dual-Function Smart Electrolyte for Dye-Sensitized Solar Cells: 5-Mercaptotetrazoles as Redox Mediator and Corrosion Repressor. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 19613-19618	3.8	13
30	Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in p-Type Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2015 , 127, 3829-3833	3.6	21
29	Light driven growth of silver nanoplatelets on 2D MoS2 nanosheet templates. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4771-4778	7.1	27
28	Thiolate/Disulfide Based Electrolytes for p-type and Tandem Dye-Sensitized Solar Cells. <i>Electrochimica Acta</i> , 2015 , 182, 458-463	6.7	31
27	Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. <i>ACS Nano</i> , 2015 , 9, 10313-23	16.7	479
26	Two-step synthesis of luminescent MoS(2)-ZnS hybrid quantum dots. <i>Nanoscale</i> , 2015 , 7, 16763-72	7.7	48
25	Investigation of Two-Solvent Grinding-Assisted Liquid Phase Exfoliation of Layered MoS2. <i>Chemistry of Materials</i> , 2015 , 27, 53-59	9.6	160
24	Dominating Energy Losses in NiO p-Type Dye-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1401387	21.8	67
23	Two-Dimensional Transition Metal Dichalcogenides in Biosystems. <i>Advanced Functional Materials</i> , 2015 , 25, 5086-5099	15.6	256
22	2D MoS2 PDMS Nanocomposites for NO2 Separation. <i>Small</i> , 2015 , 11, 5035-40	11	48
22	2D MoS2 PDMS Nanocomposites for NO2 Separation. <i>Small</i> , 2015 , 11, 5035-40 Electronic Tuning of 2D MoS2 through Surface Functionalization. <i>Advanced Materials</i> , 2015 , 27, 6225-9		48 158
			158
21	Electronic Tuning of 2D MoS2 through Surface Functionalization. <i>Advanced Materials</i> , 2015 , 27, 6225-9	24	158
21	Electronic Tuning of 2D MoS2 through Surface Functionalization. <i>Advanced Materials</i> , 2015 , 27, 6225-9 Plasmon resonances of highly doped two-dimensional MoSII <i>Nano Letters</i> , 2015 , 15, 883-90 Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells.	24 11.5	158
21 20 19	Electronic Tuning of 2D MoS2 through Surface Functionalization. <i>Advanced Materials</i> , 2015 , 27, 6225-9 Plasmon resonances of highly doped two-dimensional MoSII <i>Nano Letters</i> , 2015 , 15, 883-90 Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3758-62 Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide	24 11.5 16.4	158 145 169
21 20 19	Electronic Tuning of 2D MoS2 through Surface Functionalization. <i>Advanced Materials</i> , 2015 , 27, 6225-9 Plasmon resonances of highly doped two-dimensional MoSII <i>Nano Letters</i> , 2015 , 15, 883-90 Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3758-62 Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. <i>Chemical Communications</i> , 2015 , 51, 3770-3 Introducing manganese complexes as redox mediators for dye-sensitized solar cells. <i>Physical</i>	2411.516.45.8	158 145 169 50
21 20 19 18	Electronic Tuning of 2D MoS2 through Surface Functionalization. <i>Advanced Materials</i> , 2015 , 27, 6225-9 Plasmon resonances of highly doped two-dimensional MoSIINano Letters, 2015 , 15, 883-90 Application of the tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3758-62 Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. <i>Chemical Communications</i> , 2015 , 51, 3770-3 Introducing manganese complexes as redox mediators for dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12021-8 Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform.	24 11.5 16.4 5.8 3.6	158 145 169 50 43

13	Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(II)/(III) electrolytes. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 602-5	16.4	163
12	Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano, 2013, 7, 5911-21	16.7	51
11	Infrared sensitizers in titania-based dye-sensitized solar cells using a dimethylferrocene electrolyte. <i>ChemSusChem</i> , 2013 , 6, 2056-60	8.3	5
10	Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple. <i>Advanced Materials</i> , 2012 , 24, 1222-5	24	105
9	Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance. <i>Nano Letters</i> , 2012 , 12, 4925-31	11.5	252
8	Dye regeneration kinetics in dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16925-8	16.4	202
7	Ein solider Fortschritt f🛘 Farbstoffsolarzellen. <i>Angewandte Chemie</i> , 2012 , 124, 10601-10603	3.6	2
6	A solid advancement for dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10451-2	16.4	31
5	Dye regeneration and charge recombination in dye-sensitized solar cells with ferrocene derivatives as redox mediators. <i>Energy and Environmental Science</i> , 2012 , 5, 7090	35.4	138
4	High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. <i>Nature Chemistry</i> , 2011 , 3, 211-15	17.6	512
3	A new family of substituted triethoxysilyl iodides as organic iodide sources for dye-sensitised solar cells. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3694		11
2	Direct conversion of CO2 to solid carbon by Ga-based liquid metals. <i>Energy and Environmental Science</i> ,	35.4	8
1	Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells. <i>Advanced Materials Interfaces</i> ,2102113	4.6	2