Romano Orru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7727977/publications.pdf

Version: 2024-02-01

117453 62479 7,483 77 34 80 citations h-index g-index papers 85 85 85 5994 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multicomponent Reaction Design in the Quest for Molecular Complexity and Diversity. Angewandte Chemie - International Edition, 2011, 50, 6234-6246.	7.2	1,133
2	Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry, 2014, 16, 2958-2975.	4.6	989
3	Recent developments in asymmetric multicomponent reactions. Chemical Society Reviews, 2012, 41, 3969.	18.7	775
4	Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189.	3.5	403
5	Palladiumâ€Catalyzed Migratory Insertion of Isocyanides: An Emerging Platform in Crossâ€Coupling Chemistry. Angewandte Chemie - International Edition, 2013, 52, 7084-7097.	7.2	381
6	Recent Advances in Palladium atalyzed Cascade Cyclizations. Advanced Synthesis and Catalysis, 2011, 353, 809-841.	2.1	244
7	Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein Journal of Organic Chemistry, 2014, 10, 544-598.	1.3	228
8	A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chemical Communications, 2010, 46, 7918.	2.2	170
9	Sustainable Synthesis of Diverse Privileged Heterocycles by Palladium atalyzed Aerobic Oxidative Isocyanide Insertion. Angewandte Chemie - International Edition, 2012, 51, 13058-13061.	7.2	158
10	Multicomponent Synthesis of 2-Imidazolines. Journal of Organic Chemistry, 2005, 70, 3542-3553.	1.7	152
11	Fluorine-18 labelled building blocks for PET tracer synthesis. Chemical Society Reviews, 2017, 46, 4709-4773.	18.7	150
12	The Efficient Oneâ€Pot Reaction of up to Eight Components by the Union of Multicomponent Reactions. Angewandte Chemie - International Edition, 2009, 48, 5856-5859.	7.2	128
13	Thiosulfonates as Emerging Reactants: Synthesis and Applications. Advanced Synthesis and Catalysis, 2020, 362, 3-64.	2.1	122
14	Novel Multicomponent Reaction for the Combinatorial Synthesis of 2-Imidazolines. Organic Letters, 2003, 5, 3759-3762.	2.4	117
15	Highly Stereoselective Synthesis of Substituted Prolyl Peptides Using a Combination of Biocatalytic Desymmetrization and Multicomponent Reactions. Angewandte Chemie - International Edition, 2010, 49, 5289-5292.	7.2	112
16	Chemoenzymatic Asymmetric Total Syntheses of Antitumor Agents (3R,9R,10R)- and (3S,9R,10R)-Panaxytriol and (R)- and (S)-Falcarinol fromPanaxginsengUsing an Enantioconvergent Enzyme-Triggered Cascade Reaction. Journal of Organic Chemistry, 2002, 67, 9115-9121.	1.7	108
17	Total Synthesis of <i>Aspidosperma</i> and <i>Strychnos</i> Alkaloids through Indole Dearomatization. Chemistry - A European Journal, 2019, 25, 8916-8935.	1.7	106
18	Base Metal Catalyzed Isocyanide Insertions. Angewandte Chemie - International Edition, 2020, 59, 540-558.	7.2	99

#	Article	IF	CITATIONS
19	Sustainable Threeâ€Component Synthesis of Isothioureas from Isocyanides, Thiosulfonates, and Amines. Angewandte Chemie - International Edition, 2014, 53, 12849-12854.	7.2	94
20	A Resource-Efficient and Highly Flexible Procedure for a Three-Component Synthesis of 2-Imidazolines. Journal of Organic Chemistry, 2007, 72, 6135-6142.	1.7	87
21	Asymmetric synthesis of synthetic alkaloids by a tandem biocatalysis/Ugi/Pictet–Spengler-type cyclization sequence. Chemical Communications, 2010, 46, 7706.	2.2	86
22	A Universal Procedure for the [¹⁸ F]Trifluoromethylation of Aryl lodides and Aryl Boronic Acids with Highly Improved Specific Activity. Angewandte Chemie - International Edition, 2014, 53, 11046-11050.	7.2	84
23	lodide-Catalyzed Synthesis of Secondary Thiocarbamates from Isocyanides and Thiosulfonates. Organic Letters, 2016, 18, 2808-2811.	2.4	81
24	Efficiency, Diversity, and Complexity with Multicomponent Reactions. Synlett, 2013, 24, 666-685.	1.0	64
25	lodospirocyclization of Tryptamineâ€Derived Isocyanides: Formal Total Synthesis of Aspidofractinine. Angewandte Chemie - International Edition, 2018, 57, 15232-15236.	7.2	55
26	Synthesis of polycyclic spiroindolines by highly diastereoselective interrupted Ugi cascade reactions of 3-(2-isocyanoethyl)indoles. Chemical Communications, 2016, 52, 12482-12485.	2,2	53
27	Combining Isocyanides with Carbon Dioxide in Palladium-Catalyzed Heterocycle Synthesis: N3-Substituted Quinazoline-2,4(1H,3H)-diones via a Three-Component Reaction. ACS Catalysis, 2017, 7, 5549-5556.	5.5	51
28	Synthesis of Pyridopyrimidines by Palladium-Catalyzed Isocyanide Insertion. ACS Catalysis, 2014, 4, 40-43.	5.5	49
29	2-Bromo-6-isocyanopyridine as a Universal Convertible Isocyanide for Multicomponent Chemistry. Organic Letters, 2016, 18, 984-987.	2.4	46
30	Amine Activation: Synthesis of $\langle i \rangle N \langle i \rangle$ -(Hetero)arylamides from Isothioureas and Carboxylic Acids. Organic Letters, 2016, 18, 4602-4605.	2.4	42
31	Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules, 2020, 25, 4906.	1.7	42
32	Biocatalytic access to nonracemic \hat{l}^3 -oxo esters via stereoselective reduction using ene-reductases. Green Chemistry, 2017, 19, 511-518.	4.6	41
33	A Mild Chemo-Enzymatic Oxidation–Hydrocyanation Protocol. European Journal of Organic Chemistry, 2006, 2006, 1672-1677.	1.2	35
34	Efficient C2 functionalisation of 2H-2-imidazolines. Organic and Biomolecular Chemistry, 2008, 6, 130-137.	1.5	33
35	Hydroxynitrile Lyase from <i>Arabidopsis thaliana</i> : Identification of Reaction Parameters for Enantiopure Cyanohydrin Synthesis by Pure and Immobilized Catalyst. Advanced Synthesis and Catalysis, 2011, 353, 2399-2408.	2.1	33
36	Stereoselective synthesis of N-aryl proline amides by biotransformation–Ugi-Smiles sequence. Organic and Biomolecular Chemistry, 2012, 10, 941-944.	1.5	31

#	Article	IF	CITATIONS
37	Trityl Isocyanide as a Mechanistic Probe in Multicomponent Chemistry: Walking the Line between Ugi― and Streckerâ€type Reactions. Chemistry - A European Journal, 2016, 22, 7837-7842.	1.7	31
38	Hexafluoroisopropanol as the Acid Component in the Passerini Reaction: One-Pot Access to \hat{l}^2 -Amino Alcohols. Organic Letters, 2018, 20, 3988-3991.	2.4	30
39	Modular Three-Component Synthesis of 4-Aminoquinolines via an Imidoylative Sonogashira/Cyclization Cascade. Journal of Organic Chemistry, 2018, 83, 854-861.	1.7	28
40	Synthesis of Diverse Azolo[<i><c i="">) quinazolines by Palladium(II)―Catalyzed Aerobic Oxidative Insertion of Isocyanides. Advanced Synthesis and Catalysis, 2014, 356, 1205-1209.</c></i>	2.1	26
41	Asymmetric Synthesis of Tetracyclic Pyrroloindolines and Constrained Tryptamines by a Switchable Cascade Reaction. Angewandte Chemie - International Edition, 2015, 54, 14133-14136.	7.2	25
42	Multicomponent reactions in drug discovery and medicinal chemistry. Drug Discovery Today: Technologies, 2018, 29, 1-2.	4.0	23
43	Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chemical Society Reviews, 2022, 51, 5842-5877.	18.7	23
44	Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines. ACS Combinatorial Science, 2018, 20, 98-105.	3.8	22
45	Palladiumâ€Catalyzed Construction of Amidines from Arylboronic Acids under Oxidative Conditions. Chemistry - A European Journal, 2016, 22, 7743-7746.	1.7	21
46	Stereoselective Synthesis of Fused Vinylcyclopropanes by Intramolecular Tsuji–Trost Cascade Cyclization. Organic Letters, 2018, 20, 6611-6615.	2.4	21
47	An Enzymatic Toolbox for the Kinetic Resolution of 2â€(Pyridinâ€ <i>x</i> àêyl)butâ€3â€ynâ€2â€ols and Tertiary Cyanohydrins. European Journal of Organic Chemistry, 2010, 2010, 2753-2758.	1.2	20
48	Base Metal Catalyzed Isocyanide Insertions. Angewandte Chemie, 2020, 132, 548-566.	1.6	20
49	Synthesis of 4-aminoquinolines by aerobic oxidative palladium-catalyzed double C–H activation and isocyanide insertion. Chemistry of Heterocyclic Compounds, 2013, 49, 902-908.	0.6	18
50	Stereoselective Synthesis of Functionalized Bicyclic Scaffolds by Passerini 3 enterâ€2 omponent Reactions of Cyclic Ketoacids. European Journal of Organic Chemistry, 2017, 2017, 1262-1271.	1.2	18
51	Synthesis of Quinazolin-4-ones by Copper-Catalyzed Isocyanide Insertion. Journal of Organic Chemistry, 2020, 85, 7378-7385.	1.7	18
52	Synthesis of Densely Functionalized Pyrimidouracils by Nickel(II)-Catalyzed Isocyanide Insertion. Organic Letters, 2020, 22, 914-919.	2.4	18
53	Concise Synthesis of Highly Substituted Benzo[<i>a</i>]quinolizines by a Multicomponent Reaction/Allylation/Heck Reaction Sequence. European Journal of Organic Chemistry, 2012, 2012, 275-280.	1.2	17
54	Stereoselective Monoamine Oxidaseâ€Catalyzed Oxidative Azaâ€Friedel–Crafts Reactions of <i>meso</i> å€Pyrrolidines in Aqueous Buffer. Advanced Synthesis and Catalysis, 2016, 358, 1555-1560.	2.1	17

#	Article	IF	Citations
55	Copper($<$ scp $>$ i $<$ /scp $>$) catalyzed oxidative hydrolysis of Ugi 3-component and Ugi-azide reaction products towards $2\hat{A}^{\circ}$ \hat{I} ±-ketoamides and \hat{I} ±-ketotetrazoles. Organic and Biomolecular Chemistry, 2017, 15, 6132-6135.	1.5	16
56	BrÃ, nsted Acid-Catalyzed Cyanotritylation of Aldehydes by Trityl Isocyanide. Organic Letters, 2016, 18, 3562-3565.	2.4	15
57	Ugi-Type Reactions of Spirocyclic Indolenines as a Platform for Compound Library Generation. Synlett, 2017, 28, 376-380.	1.0	15
58	lodospirocyclization of Tryptamineâ€Derived Isocyanides: Formal Total Synthesis of Aspidofractinine. Angewandte Chemie, 2018, 130, 15452-15456.	1.6	15
59	Synthesis of Secondary Amides from Thiocarbamates. Organic Letters, 2018, 20, 4235-4239.	2.4	15
60	Front Cover Picture: Thiosulfonates as Emerging Reactants: Synthesis and Applications (Adv. Synth.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
61	Zinc(<scp>ii</scp>)-mediated diastereoselective Passerini reactions of biocatalytically desymmetrised renewable inputs. Organic Chemistry Frontiers, 2020, 7, 380-398.	2.3	14
62	Ugi Four-Center Three-Component Reaction as a Direct Approach to Racetams. Synthesis, 2017, 49, 1664-1674.	1.2	12
63	Efficient Diastereoselective Threeâ€Component Synthesis of Pipecolic Amides. European Journal of Organic Chemistry, 2019, 2019, 5313-5325.	1.2	11
64	Biomimetic approach toward the stereoselective synthesis of acetogenins. Pure and Applied Chemistry, 2003, 75, 259-264.	0.9	9
65	Synthesis, characterization and biological activity of fluorescently labeled bedaquiline analogues. RSC Advances, 2016, 6, 108708-108716.	1.7	8
66	Diastereoselective One-Pot Synthesis of Tetrafunctionalized 2-Imidazolines. Journal of Organic Chemistry, 2014, 79, 5219-5226.	1.7	7
67	Stereoselective Synthesis of βâ€Sulfinylamino Isocyanides and 2â€Imidazolines. European Journal of Organic Chemistry, 2014, 2014, 3762-3766.	1.2	6
68	Enantioselective Bioâ€Hydrolysis of Geranylâ€Derived racâ€Epoxides: A Chemoenzymatic Route to transâ€Furanoid Linalool Oxide. Advanced Synthesis and Catalysis, 2018, 361, 813.	2.1	6
69	Synthesis of Heterocycles <i>via</i> Aerobic Ni-Catalyzed Imidoylation of Aromatic 1,2-Bis-nucleophiles with Isocyanides. ACS Catalysis, 2022, 12, 6857-6873.	5.5	5
70	Synthesis of 3′â€Deoxyribolactones using a Hydrolysisâ€Induced Lactonization Cascade Reaction of Epoxy Cyanohydrins. European Journal of Organic Chemistry, 2008, 2008, 1336-1339.	1.2	4
71	Stereoselective Chemoenzymatic Cascade Synthesis of the <i>bis</i> i>â€₹HF Core of Acetogenins. European Journal of Organic Chemistry, 2019, 2019, 1092-1101.	1.2	3
72	The Forgotten Pyrazines: Exploring the Dakin–West Reaction. Chemistry - A European Journal, 2020, 26, 8090-8100.	1.7	3

Romano Orru

#	Article	IF	CITATIONS
73	Metal-free one-pot α-carboxylation of primary alcohols. Organic and Biomolecular Chemistry, 2016, 14, 9716-9719.	1.5	2
74	Integrative Theory/Experimentâ€Driven Exploration of a Multicomponent Reaction towards Imidazolineâ€⊋â€(thi)ones. European Journal of Organic Chemistry, 2018, 2018, 104-112.	1.2	2
75	Post-Modification of Biobased Pyrazines and Their Polyesters. Macromolecules, 2021, 54, 10850-10859.	2.2	2
76		1.7	1
77	Frontispiece: Total Synthesis of <i>Aspidosperma</i> and <i>Strychnos</i> Alkaloids through Indole Dearomatization. Chemistry - A European Journal, 2019, 25, .	1.7	1