List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7727828/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Magnesium Hydroxide Templated Hierarchical Porous Carbon Nanosheets as Electrodes for<br>High-Energy-Density Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6805-6813.                                         | 2.5 | 8         |
| 2  | Two-Dimensional Hexagonal-Shaped Mesoporous Carbon Sheets for Supercapacitors. ACS Omega, 2022, 7, 27896-27902.                                                                                                         | 1.6 | 9         |
| 3  | Hybrid supercapacitors using electrodes from fibers comprising polymer blend–metal oxide composites with polymethacrylic acid as chelating agent. Nanotechnology, 2021, 32, 325401.                                     | 1.3 | 6         |
| 4  | Reduced Aging in Carbon Molecular Sieve Membranes Derived from PIM-1 and MOP-18. Industrial &<br>Engineering Chemistry Research, 2021, 60, 9962-9970.                                                                   | 1.8 | 12        |
| 5  | Holmium-based metal-organic frameworks using the BDC linker. Polyhedron, 2021, 205, 115283.                                                                                                                             | 1.0 | 7         |
| 6  | Critical Rare Earth Element Recovery from Coal Ash Using Microsphere Flower Carbon. ACS Applied<br>Materials & Interfaces, 2021, 13, 48492-48499.                                                                       | 4.0 | 8         |
| 7  | Fluoro-Bridged Clusters in Rare-Earth Metal–Organic Frameworks. Journal of the American Chemical<br>Society, 2021, 143, 17995-18000.                                                                                    | 6.6 | 37        |
| 8  | Yttrium Oxide-Catalyzed Formation of Electrically Conductive Carbon for Supercapacitors. ACS<br>Applied Energy Materials, 2021, 4, 12499-12507.                                                                         | 2.5 | 11        |
| 9  | Graphene-like Carbon from Calcium Hydroxide. ACS Omega, 2021, 6, 31066-31076.                                                                                                                                           | 1.6 | 8         |
| 10 | The Importance of Evaluating the Lot-to-Lot Batch Consistency of Commercial Multi-Walled Carbon<br>Nanotube Products. Nanomaterials, 2020, 10, 1930.                                                                    | 1.9 | 3         |
| 11 | Biphenyl Wrinkled Mesoporous Silica Nanoparticles for pH-Responsive Doxorubicin Drug Delivery.<br>Materials, 2020, 13, 1998.                                                                                            | 1.3 | 21        |
| 12 | Characterization of a Holmium 4,4′-Biphenyldicarboxylate Metal-Organic Framework and Its Potential<br>as a Holmium Carrier System. Journal of Nanoscience and Nanotechnology, 2020, 20, 3019-3024.                      | 0.9 | 10        |
| 13 | Aromatic Polyimides Containing Diaminobenzoic Acid as <i>in Situ</i> Porogen for Electrochemical Supercapacitors. ACS Applied Polymer Materials, 2019, 1, 3203-3209.                                                    | 2.0 | 7         |
| 14 | Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors. Nanotechnology, 2019, 30, 355402.                                                            | 1.3 | 51        |
| 15 | Biphenyl-bridged wrinkled mesoporous silica nanoparticles for radioactive iodine capture. MRS<br>Advances, 2019, 4, 435-439.                                                                                            | 0.5 | 0         |
| 16 | Transition from a 1D Coordination Polymer to a Mixed-Linker Layered MOF. Inorganic Chemistry, 2019, 58, 5031-5041.                                                                                                      | 1.9 | 13        |
| 17 | Fabrication and characterization of aging resistant carbon molecular sieve membranes for C3 separation using high molecular weight crosslinkable polyimide, 6FDA-DABA. Journal of Membrane Science, 2019, 581, 430-438. | 4.1 | 36        |
| 18 | Synthesis and characterization of a holmium 2,2′-bipyridine-5,5′-dicarboxylate MOF: Towards the construction of a suitable holmium carrier. Polyhedron, 2019, 159, 12-17.                                               | 1.0 | 11        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nanocast carbon microsphere flowers from a lanthanum-based template. Materials Letters, 2019, 234, 224-227.                                                                                                    | 1.3 | 7         |
| 20 | Wrinkled mesoporous carbon supported Pd nanoparticles for hydrogenation and aerobic oxidation reactions. Journal of Porous Materials, 2018, 25, 15-21.                                                         | 1.3 | 6         |
| 21 | The Effect of Sample Preparation on Observed Microstructure in Polymeric and Polymer Composite<br>Gas Separation Membranes. Microscopy and Microanalysis, 2018, 24, 1456-1457.                                 | 0.2 | О         |
| 22 | Wrinkled Mesoporous Silica Supported Lanthanum Oxide as a Template for Porous Carbon. Journal of Nanoscience and Nanotechnology, 2018, 18, 414-418.                                                            | 0.9 | 10        |
| 23 | Lanthanum Hydroxide Nanorod-Templated Graphitic Hollow Carbon Nanorods for Supercapacitors.<br>ACS Omega, 2018, 3, 13913-13918.                                                                                | 1.6 | 17        |
| 24 | Selective Extraction of Thorium from Rare Earth Elements Using Wrinkled Mesoporous Carbon.<br>Journal of the American Chemical Society, 2018, 140, 14735-14739.                                                | 6.6 | 70        |
| 25 | Synthesis and modification of titanium containing wrinkled mesoporous silica for cyclohexene epoxidation. Microporous and Mesoporous Materials, 2017, 243, 76-84.                                              | 2.2 | 25        |
| 26 | Amine-functionalized (Al) MIL-53/VTECâ,,¢ mixed-matrix membranes for H2/CO2 mixture separations at high temperature. Journal of Membrane Science, 2017, 530, 201-212.                                          | 4.1 | 26        |
| 27 | Oxidative Dehydrogenation of Cyclohexane and Cyclohexene over Y-doped CeO2 Nanorods. Catalysis<br>Letters, 2017, 147, 738-744.                                                                                 | 1.4 | 10        |
| 28 | Synthesis of wrinkled mesoporous carbon. Materials Letters, 2017, 195, 139-142.                                                                                                                                | 1.3 | 17        |
| 29 | Novel binder-free electrode materials for supercapacitors utilizing high surface area carbon<br>nanofibers derived from immiscible polymer blends of PBI/6FDA-DAM:DABA. RSC Advances, 2017, 7,<br>20947-20959. | 1.7 | 31        |
| 30 | Liquid phase propylene oxidation with tert-butyl hydroperoxide over titanium containing wrinkled mesoporous silica. Catalysis Communications, 2017, 96, 15-18.                                                 | 1.6 | 15        |
| 31 | Polymer Blend Membranes for Gas Separations. , 2017, , 195-242.                                                                                                                                                |     | Ο         |
| 32 | Compatibilized Immiscible Polymer Blends for Gas Separations. Materials, 2016, 9, 643.                                                                                                                         | 1.3 | 21        |
| 33 | Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas<br>Separations. Processes, 2016, 4, 32.                                                                                  | 1.3 | 42        |
| 34 | Radiotherapeutic bandage for the treatment of squamous cell carcinoma of the skin. Nuclear<br>Medicine and Biology, 2016, 43, 333-338.                                                                         | 0.3 | 18        |
| 35 | Encapsulation of red sulfur chromophores in a zeolitic imidazolate framework (ZIF-8) via solvent assisted linker exchange. Microporous and Mesoporous Materials, 2016, 219, 172-177.                           | 2.2 | 12        |
| 36 | Carbonate-Based Zeolitic Imidazolate Framework for Highly Selective CO <sub>2</sub> Capture.<br>Inorganic Chemistry, 2015, 54, 1816-1821.                                                                      | 1.9 | 52        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Novel wrinkled periodic mesoporous organosilica nanoparticles for hydrophobic anticancer drug delivery. Journal of Porous Materials, 2015, 22, 1-10.                                                               | 1.3 | 57        |
| 38 | Fabrication of a Substituted Imidazolate Material 1 (SIM-1) membrane using post synthetic modification (PSM) for pervaporation of water/ethanol mixtures. Journal of Porous Materials, 2015, 22, 1275-1284.        | 1.3 | 17        |
| 39 | Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules. ACS Applied Materials & amp; Interfaces, 2015, 7, 18618-18627.                               | 4.0 | 35        |
| 40 | Nitric oxide- and cisplatin-releasing silica nanoparticles for use against non-small cell lung cancer.<br>Journal of Inorganic Biochemistry, 2015, 153, 23-31.                                                     | 1.5 | 66        |
| 41 | Chemoradiotherapeutic Magnetic Nanoparticles for Targeted Treatment of Nonsmall Cell Lung<br>Cancer. Molecular Pharmaceutics, 2015, 12, 3588-3596.                                                                 | 2.3 | 52        |
| 42 | Electrospun nitric oxide releasing bandage with enhanced wound healing. Acta Biomaterialia, 2015, 13, 121-130.                                                                                                     | 4.1 | 84        |
| 43 | Composite membranes with a highly selective polymer skin for hydrogen separation. Separation and Purification Technology, 2014, 135, 190-198.                                                                      | 3.9 | 25        |
| 44 | Radiotherapeutic Bandage Based on Electrospun Polyacrylonitrile Containing Holmium-166 Iron<br>Garnet Nanoparticles for the Treatment of Skin Cancer. ACS Applied Materials & Interfaces, 2014, 6,<br>22250-22256. | 4.0 | 37        |
| 45 | Tuning the crystal size and morphology of the substituted imidazole material, SIM-1. Journal of Porous Materials, 2014, 21, 889-902.                                                                               | 1.3 | 26        |
| 46 | Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. Journal of Membrane Science, 2014, 463, 82-93.                                                                                               | 4.1 | 79        |
| 47 | Synthesis, Characterization, and Photocatalytic Activity of Y-Doped CeO <sub>2</sub> Nanorods. ACS<br>Catalysis, 2014, 4, 577-584.                                                                                 | 5.5 | 301       |
| 48 | Stabilization of immiscible polymer blends using structure directing metal organic frameworks<br>(MOFs). Polymer, 2014, 55, 2028-2034.                                                                             | 1.8 | 61        |
| 49 | Sensitive and selective real-time electrochemical monitoring of DNA repair. Biosensors and<br>Bioelectronics, 2014, 54, 541-546.                                                                                   | 5.3 | 50        |
| 50 | Electrospun Cellulose Acetate-Garnet Nanocomposite Magnetic Fibers for Bioseparations. ACS Applied<br>Materials & Interfaces, 2014, 6, 244-251.                                                                    | 4.0 | 33        |
| 51 | Coated melt-spun acrylonitrile-based suture for delayed release of nitric oxide. Materials Letters, 2014, 125, 221-223.                                                                                            | 1.3 | 8         |
| 52 | Synthesis of TiO <sub>2</sub> nanotube films via pulsed laser deposition followed by a hydrothermal treatment. Journal of Experimental Nanoscience, 2014, 9, 126-137.                                              | 1.3 | 4         |
| 53 | MIL-53 frameworks in mixed-matrix membranes. Microporous and Mesoporous Materials, 2014, 196, 165-174.                                                                                                             | 2.2 | 106       |
| 54 | Novel Nanofiltration Hollow Fiber Membrane Produced via Electrospinning. Industrial &<br>Engineering Chemistry Research, 2013, 52, 3473-3480.                                                                      | 1.8 | 46        |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Metal Oxide Nanotube, Nanorod, and Quantum Dot Photocatalysis. , 2013, , 213-244.                                                                                                   |     | 8         |
| 56 | Storage and delivery of nitric oxide via diazeniumdiolated metal organic framework. Microporous and Mesoporous Materials, 2013, 181, 17-22.                                         | 2.2 | 38        |
| 57 | Instrument for gas permeation measurements at high pressure and high temperature. Review of Scientific Instruments, 2013, 84, 065107.                                               | 0.6 | 10        |
| 58 | Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes<br>for metal oxide hybrid supercapacitors. Nano Energy, 2013, 2, 966-975.            | 8.2 | 125       |
| 59 | Vanadium oxide nanowire – Graphene binder free nanocomposite paper electrodes for<br>supercapacitors: A facile green approach. Journal of Power Sources, 2013, 230, 130-137.        | 4.0 | 142       |
| 60 | Selective detection of olefins using a luminescent silver-functionalized metal organic framework,<br>RPM3. Microporous and Mesoporous Materials, 2013, 174, 100-107.                | 2.2 | 34        |
| 61 | Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation.<br>Industrial & Engineering Chemistry Research, 2013, 52, 6991-7001.                     | 1.8 | 178       |
| 62 | Fabrication of Oriented Silver-Functionalized RPM3 Films for the Selective Detection of Olefins.<br>Langmuir, 2013, 29, 5927-5936.                                                  | 1.6 | 26        |
| 63 | Acrylonitrile-Based Nitric Oxide Releasing Melt-Spun Fibers for Enhanced Wound Healing.<br>Macromolecules, 2012, 45, 5894-5900.                                                     | 2.2 | 40        |
| 64 | Tuning the Gate Opening Pressure of Metal–Organic Frameworks (MOFs) for the Selective Separation of Hydrocarbons. Journal of the American Chemical Society, 2012, 134, 15201-15204. | 6.6 | 278       |
| 65 | Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene. Journal of Power Sources, 2012, 215, 1-10.    | 4.0 | 128       |
| 66 | Enzyme Immobilization via Electrospinning. Topics in Catalysis, 2012, 55, 1057-1069.                                                                                                | 1.3 | 55        |
| 67 | Hydrothermal Synthesis of Graphene-TiO <sub>2</sub> Nanotube Composites with Enhanced<br>Photocatalytic Activity. ACS Catalysis, 2012, 2, 949-956.                                  | 5.5 | 863       |
| 68 | Layer-by-layer assembly of titanate nanosheets/poly- (ethylenimine) on PEN films. Materials Letters,<br>2012, 66, 242-245.                                                          | 1.3 | 8         |
| 69 | Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors. Journal of Power Sources, 2012, 203, 227-232.                                             | 4.0 | 112       |
| 70 | Nafion-sulfonated dendrimer composite membranes for fuel cell applications. Journal of Membrane<br>Science, 2012, 392-393, 175-180.                                                 | 4.1 | 19        |
| 71 | Mixed Matrix Membranes Based on Metal Organic Frameworks. , 2012, , 83-93.                                                                                                          |     | 6         |
| 72 | <i>S-</i> Nitrosocysteine-Decorated PbS QDs/TiO <sub>2</sub> Nanotubes for Enhanced Production of Singlet Oxygen. Journal of the American Chemical Society, 2011, 133, 3492-3497.   | 6.6 | 83        |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Low-Temperature Synthesis of Copper(II) Sulfide Quantum Dot Decorated TiO <sub>2</sub> Nanotubes<br>and Their Photocatalytic Properties. Journal of Physical Chemistry C, 2011, 115, 6175-6180. | 1.5  | 109       |
| 74 | Perspective of Recent Progress in Immobilization of Enzymes. ACS Catalysis, 2011, 1, 956-968.                                                                                                   | 5.5  | 428       |
| 75 | Vanadium Oxide Nanotube Spherical Clusters Prepared on Carbon Fabrics for Energy Storage<br>Applications. ACS Applied Materials & Interfaces, 2011, 3, 4512-4517.                               | 4.0  | 76        |
| 76 | Fabrication of cellulase protein fibers through concentric electrospinning. Journal of Molecular<br>Catalysis B: Enzymatic, 2011, 72, 1-5.                                                      | 1.8  | 9         |
| 77 | Vanadium Oxide Nanowire–Carbon Nanotube Binderâ€Free Flexible Electrodes for Supercapacitors.<br>Advanced Energy Materials, 2011, 1, 936-945.                                                   | 10.2 | 303       |
| 78 | Preparation of a Delivery System for Smart Coatings by Electrostatic Deposition. ACS Symposium Series, 2010, , 31-44.                                                                           | 0.5  | 2         |
| 79 | Storage and Release of Nitric Oxide from Molecular Sieve Nanoparticles. ACS Symposium Series, 2010, ,<br>181-192.                                                                               | 0.5  | 2         |
| 80 | Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane<br>Science, 2010, 361, 28-37.                                                                       | 4.1  | 776       |
| 81 | TiO2 Nanotube Films via Laser Ablation for Solar Cells. Materials Research Society Symposia<br>Proceedings, 2009, 1211, 1.                                                                      | 0.1  | 0         |
| 82 | Electrospinning of beta silicon carbide nanofibers. Materials Letters, 2009, 63, 2361-2364.                                                                                                     | 1.3  | 36        |
| 83 | Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009, 328, 165-173.                                                                                   | 4.1  | 524       |
| 84 | Microwave assisted synthesis of ETS-10. Journal of Porous Materials, 2009, 16, 487.                                                                                                             | 1.3  | 5         |
| 85 | Photocatalytic Activity of PbS Quantum Dot/TiO <sub>2</sub> Nanotube Composites. Journal of Physical Chemistry C, 2009, 113, 10755-10760.                                                       | 1.5  | 125       |
| 86 | Novel Delivery System for the Bioregulatory Agent Nitric Oxide. Chemistry of Materials, 2009, 21, 5032-5041.                                                                                    | 3.2  | 32        |
| 87 | Electrospinning of Poly(alkoxyphenylenevinylene) and Methanofullerene Nanofiber Blends. ACS<br>Applied Materials & Interfaces, 2009, 1, 1958-1965.                                              | 4.0  | 18        |
| 88 | Proton conductivity of acid-doped meta-polyaniline. Journal of Membrane Science, 2008, 313, 86-90.                                                                                              | 4.1  | 37        |
| 89 | A Delivery System for Selfâ€Healing Inorganic Films. Advanced Functional Materials, 2008, 18, 3620-3629.                                                                                        | 7.8  | 37        |
| 90 | Proton-conducting membranes based on HTFSI-doped PEI/SiO2 nanocomposites. Journal of Membrane Science, 2008, 313, 91-96.                                                                        | 4.1  | 17        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Gas permeability properties of Matrimid® membranes containing the metal-organic framework<br>Cu–BPY–HFS. Journal of Membrane Science, 2008, 313, 170-181.                                                           | 4.1 | 337       |
| 92  | Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles. Journal of Membrane Science, 2008, 325, 28-39.                                                                                     | 4.1 | 171       |
| 93  | Surface and subsurface characterization of epoxy-mesoporous silica composites to clarify tribological properties. Wear, 2008, 265, 88-96.                                                                           | 1.5 | 21        |
| 94  | Mesoporous benzene silica functionalized with various amine groups. Microporous and Mesoporous<br>Materials, 2008, 108, 86-94.                                                                                      | 2.2 | 7         |
| 95  | Photoluminescent and redox active periodic mesoporous organosilicas based on 2,7-diazapyrene.<br>Microporous and Mesoporous Materials, 2008, 112, 1-13.                                                             | 2.2 | 21        |
| 96  | Conventional and microwave hydrothermal synthesis of zeolite ZSM-5 from the cupola slag.<br>Microporous and Mesoporous Materials, 2008, 111, 260-266.                                                               | 2.2 | 51        |
| 97  | Microwave synthesis of gallium zinc phosphate NTHU-4. Microporous and Mesoporous Materials, 2008, 113, 325-332.                                                                                                     | 2.2 | 7         |
| 98  | Fabrication of Silver Vanadium Oxide and V <sub>2</sub> O <sub>5</sub> Nanowires for Electrochromics. ACS Nano, 2008, 2, 293-301.                                                                                   | 7.3 | 293       |
| 99  | Microperoxidase-11 Immobilized in a Metal Organic Framework. ACS Symposium Series, 2008, , 76-98.                                                                                                                   | 0.5 | 5         |
| 100 | Gas Permeability Properties of Mixed-Matrix Matrimid Membranes Containing a Carbon Aerogel:  A<br>Material with Both Micropores and Mesopores. Industrial & Engineering Chemistry Research,<br>2008, 47, 2794-2802. | 1.8 | 50        |
| 101 | The Facile Preparation of Partially Reduced V <sub>2</sub> O <sub>5</sub> Nanowire Sheets. ACS<br>Symposium Series, 2008, , 152-170.                                                                                | 0.5 | 0         |
| 102 | Novel Polysilsesquioxane Hybrid Membranes for Proton Exchange Membrane Fuel Cell (PEMFC)<br>Applications. Separation Science and Technology, 2008, 43, 3981-4008.                                                   | 1.3 | 6         |
| 103 | Fabrication of PbS Quantum Dot Doped TiO <sub>2</sub> Nanotubes. ACS Nano, 2008, 2, 1682-1688.                                                                                                                      | 7.3 | 196       |
| 104 | Microwave synthesis of NTHU-4. Studies in Surface Science and Catalysis, 2007, 170, 314-321.                                                                                                                        | 1.5 | 0         |
| 105 | A novel pathway to TiO2, TiO2-SnO2 nanofibers and core shell structures from mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2007, 170, 1514-1521.                                           | 1.5 | 1         |
| 106 | Mesoporous Molecular Sieve Derived TiO2Nanofibers Doped with SnO2. Journal of Physical Chemistry C, 2007, 111, 10359-10367.                                                                                         | 1.5 | 46        |
| 107 | Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomaterialia, 2007, 3, 1050-1059.                                                                                                             | 4.1 | 77        |
| 108 | TiO2 Nanofibers and Core-Shell Structures Prepared Using Mesoporous Molecular Sieves as<br>Templates. Small, 2006, 2, 52-55.                                                                                        | 5.2 | 30        |

| #   | Article                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Transformation of mesoporous benzene silica to nanoporous carbon. Microporous and Mesoporous<br>Materials, 2006, 91, 276-285.                                 | 2.2 | 12        |
| 110 | Microwave synthesis of ETS-4 and ETS-4 thin films. Microporous and Mesoporous Materials, 2006, 90, 229-236.                                                   | 2.2 | 23        |
| 111 | Hybrid materials for immobilization of MP-11 catalyst. Topics in Catalysis, 2006, 38, 269-278.                                                                | 1.3 | 108       |
| 112 | Synthesis of proton conducting tungstosilicate mesoporous materials and polymer composite membranes. Microporous and Mesoporous Materials, 2005, 81, 217-234. | 2.2 | 7         |
| 113 | Preparation and characterization of UTD-12/ZSM-48 thin films via pulsed-laser deposition.<br>Microporous and Mesoporous Materials, 2005, 81, 125-134.         | 2.2 | 4         |
| 114 | Proton conducting polyaniline molecular sieve composites. Microporous and Mesoporous Materials, 2005, 81, 321-332.                                            | 2.2 | 21        |
| 115 | Fabrication of hollow spheres composed of nanosized ZSM-5 crystals via laser ablation. Microporous and Mesoporous Materials, 2005, 86, 14-22.                 | 2.2 | 33        |
| 116 | Electrospun mesoporous metal oxide fibers. Microporous and Mesoporous Materials, 2005, 86, 1-13.                                                              | 2.2 | 71        |
| 117 | Fabrication of TiO2 Nanofibers from a Mesoporous Silica Film. Chemistry of Materials, 2005, 17, 5136-5140.                                                    | 3.2 | 48        |
| 118 | Novel Strategies for the Preparation of TiO2 Nanofibers. Materials Research Society Symposia<br>Proceedings, 2004, 836, L5.14.1.                              | 0.1 | 0         |
| 119 | Preparation and Characterization of Mordenite Thin Films via Pulsed Laser Deposition. Journal of Porous Materials, 2004, 11, 191-209.                         | 1.3 | 6         |
| 120 | Synthesis and Characterization of Organosilane Functionalized DAM-1 Mesoporous Silica. Journal of Porous Materials, 2004, 11, 239-254.                        | 1.3 | 21        |
| 121 | Synthesis of DAM-1 molecular sieves containing single walled carbon nanotubes. Microporous and Mesoporous Materials, 2004, 67, 61-65.                         | 2.2 | 7         |
| 122 | Electrospun mesoporous titanium dioxide fibers. Microporous and Mesoporous Materials, 2004, 69, 77-83.                                                        | 2.2 | 205       |
| 123 | Recrystallization of layered silicates to silicalite-1. Microporous and Mesoporous Materials, 2004, 69, 85-96.                                                | 2.2 | 37        |
| 124 | Synthesis of Kenyaite, Magadiite and Octosilicate Using Poly(ethylene glycol) as a Template. Journal of<br>Porous Materials, 2003, 10, 5-15.                  | 1.3 | 32        |
| 125 | Direct Synthesis of ZSM-5 and Mordenite Using Poly(ethylene glycol) as a Structure-Directing Agent.<br>Journal of Porous Materials, 2003, 10, 235-242.        | 1.3 | 15        |
| 126 | Electrospun mesoporous molecular sieve fibers. Microporous and Mesoporous Materials, 2003, 63, 75-84.                                                         | 2.2 | 73        |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Electrospun MEH-PPV/SBA-15 Composite Nanofibers Using a Dual Syringe Method. Journal of the<br>American Chemical Society, 2003, 125, 14531-14538.            | 6.6 | 259       |
| 128 | Optical encoding with shaped DAM-1 molecular sieve particles. Lab on A Chip, 2003, 3, 132.                                                                   | 3.1 | 14        |
| 129 | The Preparation of Partially Oriented Zeolite Thin Films via Pulsed Laser Ablation. Materials Research<br>Society Symposia Proceedings, 2002, 752, 1.        | 0.1 | 0         |
| 130 | Synthesis of Large Pore Zeolites and Molecular Sieves. Progress in Inorganic Chemistry, 2002, , 217-268.                                                     | 3.0 | 8         |
| 131 | Selective Matrimid Membranes Containing Mesoporous Molecular Sieves. Materials Research Society<br>Symposia Proceedings, 2002, 752, 1.                       | 0.1 | 4         |
| 132 | Preparation of partially oriented zeolite MCM-22 membranes via pulsed laser deposition. Microporous and Mesoporous Materials, 2002, 52, 141-150.             | 2.2 | 31        |
| 133 | Preparation and characterization of zeolite X membranes via pulsed-laser deposition. Microporous and Mesoporous Materials, 2002, 52, 79-91.                  | 2.2 | 38        |
| 134 | Further studies of DAM-1 mesoporous silica preparations. Microporous and Mesoporous Materials, 2002, 54, 229-248.                                            | 2.2 | 30        |
| 135 | Molecular imprinting of mesoporous SBA-15 with chiral ruthenium complexes. Microporous and Mesoporous Materials, 2002, 54, 249-255.                          | 2.2 | 28        |
| 136 | Pulsed laser deposition of zeolite NaX thin films on silica fibers. Microporous and Mesoporous<br>Materials, 2002, 56, 47-53.                                | 2.2 | 22        |
| 137 | Gas Permeability Properties of Polysulfone Membranes Containing the Mesoporous Molecular Sieve<br>MCM-41. Chemistry of Materials, 2001, 13, 2366-2373.       | 3.2 | 187       |
| 138 | Preparation of Line Patterned Mesoporous DAM-1 Thin Films via Pulsed Laser Deposition. Materials<br>Research Society Symposia Proceedings, 2001, 704, 10111. | 0.1 | 0         |
| 139 | Enantioselective epoxidations catalyzed by zeolite MCM-22 encapsulated Jacobsen's catalyst. Catalysis<br>Letters, 2001, 74, 77-80.                           | 1.4 | 33        |
| 140 | Preparation and Charaterization of DAM-1 type Materials. Materials Research Society Symposia<br>Proceedings, 2000, 662, 1.                                   | 0.1 | 0         |
| 141 | Molecular sieve coatings on spherical substrates via pulsed laser deposition. Microporous and Mesoporous Materials, 2000, 34, 31-42.                         | 2.2 | 19        |
| 142 | Oriented films of mesoporous MCM-41 macroporous tubules via pulsed laser deposition. Microporous and Mesoporous Materials, 2000, 38, 97-105.                 | 2.2 | 49        |
| 143 | Preparation and characterization of oriented MAPO-39 membranes. Microporous and Mesoporous Materials, 2000, 38, 107-121.                                     | 2.2 | 27        |
| 144 | Cytochrome c immobilization into mesoporous molecular sieves. Journal of Molecular Catalysis B:<br>Enzymatic, 2000, 10, 453-469.                             | 1.8 | 228       |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthesis and Characterization of DAM-1 type Materials. Materials Research Society Symposia<br>Proceedings, 2000, 628, 1.                                                       | 0.1 | 5         |
| 146 | Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors.<br>Microporous and Mesoporous Materials, 1999, 28, 113-123.                 | 2.2 | 78        |
| 147 | Zeolite Coatings on Three-Dimensional Objects via Laser Ablation. Chemistry of Materials, 1999, 11, 189-191.                                                                    | 3.2 | 29        |
| 148 | Preparation of Oriented Zeolite UTD-1 Membranes via Pulsed Laser Ablation. Journal of the American Chemical Society, 1999, 121, 139-146.                                        | 6.6 | 59        |
| 149 | Photoluminescent properties of MCM-41 molecular sieves. Microporous and Mesoporous Materials, 1998, 20, 67-76.                                                                  | 2.2 | 77        |
| 150 | Preparation of FeAPO-5 Molecular Sieve Thin Films and Application as a Capacitive Type Humidity Sensor. Chemistry of Materials, 1998, 10, 4114-4122.                            | 3.2 | 41        |
| 151 | Preparation of Zeolite UTD-1 Films by Pulsed Laser Ablation:Â Evidence for Oriented Crystal Growth.<br>Chemistry of Materials, 1998, 10, 464-466.                               | 3.2 | 53        |
| 152 | Synthesis and Characterization of CuAPO-5 Molecular Sieves:Â Evidence for the Framework<br>Incorporation of Cu(II) Ions. Journal of Physical Chemistry B, 1998, 102, 1379-1386. | 1.2 | 34        |
| 153 | Pulsed Laser Ablation of Low-Density Nanoporous Metal Oxides. Materials Research Society Symposia<br>Proceedings, 1998, 526, 391.                                               | 0.1 | 1         |
| 154 | The synthesis and characteriztion of UTD-1: The first large pore zeolite based on a 14 membered ring system. Studies in Surface Science and Catalysis, 1997, 105, 415-421.      | 1.5 | 19        |
| 155 | Characterization of the Extra-Large-Pore Zeolite UTD-1. Journal of the American Chemical Society, 1997, 119, 8474-8484.                                                         | 6.6 | 168       |
| 156 | A Capacitance Type Chemical Sensor Based on AlPO4-5 Molecular Sieves. Chemistry of Materials, 1997, 9,<br>380-386.                                                              | 3.2 | 38        |
| 157 | Synthesis and Characterization of Cobaltâ^'Complex Functionalized MCM-41. Chemistry of Materials, 1997, 9, 61-67.                                                               | 3.2 | 197       |
| 158 | Synthesis and Characterization of GaPO <sub>4</sub> Molecular Sieves Using Metal Complexes as Templates. Materials Research Society Symposia Proceedings, 1996, 454, 217.       | 0.1 | 6         |
| 159 | A Study of Suspending Agents for Gadolinium(III)-Exchanged Hectorite. An Oral Magnetic Resonance<br>Imaging Contrast Agent. Langmuir, 1996, 12, 6277-6281.                      | 1.6 | 28        |
| 160 | Enzyme immobilization in MCM-41 molecular sieve. Journal of Molecular Catalysis B: Enzymatic, 1996, 2, 115-126.                                                                 | 1.8 | 566       |
| 161 | Oxidations catalyzed by zeolite ship-in-a-bottle complexes. Applied Catalysis A: General, 1996, 143, 159-173.                                                                   | 2.2 | 136       |
| 162 | Studies of Gadolinium(III)-Modified Hectorite Clays as Potential Oral MRI Contrast Agents. The Journal of Physical Chemistry, 1996, 100, 16429-16434.                           | 2.9 | 19        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Comment on "Zeolite-Modified Electrodes: Intra- versus Extrazeolite Electron Transfer. The Journal<br>of Physical Chemistry, 1996, 100, 8607-8609.                                                                                        | 2.9 | 45        |
| 164 | Gadolinium zeolite as an oral contrast agent for magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 1995, 5, 499-508.                                                                                                     | 1.9 | 58        |
| 165 | The preparation and characterization of AlPO4 thin films via laser ablation of AlPO4-H4. Thin Solid Films, 1995, 260, 4-9.                                                                                                                | 0.8 | 20        |
| 166 | The synthesis and characterization of the molecular sieve SAPO-16 as well as other SAPO and CoAPO phases using bis(cyclopentadienyl) cobalt(III) hydroxide as a structure directing agent. Journal of Porous Materials, 1995, 1, 199-206. | 1.3 | 9         |
| 167 | Cyclohexane oxidation catalyzed by zeolite encapsulatedruthenium perfluorophthalocyanines.<br>Studies in Surface Science and Catalysis, 1995, 94, 713-719.                                                                                | 1.5 | 36        |
| 168 | Oxidation of alkanes catalyzed by zeolite-encapsulated perfluorinated ruthenium phthalocyanines<br>Journal of the American Chemical Society, 1995, 117, 10753-10754.                                                                      | 6.6 | 200       |
| 169 | Zeolite encapsulated cobalt(II) and copper(II) perfluorophthalocyanines. Synthesis and characterization. Inorganic Chemistry, 1994, 33, 67-72.                                                                                            | 1.9 | 144       |
| 170 | Molecular Sieve Based Chemical Sensors. Materials Research Society Symposia Proceedings, 1994, 351,<br>263.                                                                                                                               | 0.1 | 6         |
| 171 | Molecular Sieve Thin Films via Laser Ablation. Materials Research Society Symposia Proceedings, 1994,<br>351, 437.                                                                                                                        | 0.1 | 11        |
| 172 | Molecular Sieve Synthesis using Metallocenes as Structure Directing Agents. Materials Research<br>Society Symposia Proceedings, 1994, 368, 369.                                                                                           | 0.1 | 21        |
| 173 | Molecular Sieve Based Chemical Sensors. Materials Research Society Symposia Proceedings, 1994, 371, 33.                                                                                                                                   | 0.1 | 9         |
| 174 | Electrochemistry of zeolite-encapsulated cobalt salen complexes in acetonitrile and dimethyl sulphoxide solutions. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3831.                                                 | 1.7 | 68        |
| 175 | The preparation and characterization of an X-type zeolite: An experiment in solid-state chemistry.<br>Journal of Chemical Education, 1991, 68, 875.                                                                                       | 1.1 | 33        |
| 176 | The Application Of Molecular Sieves As Magnetic Resonance Imaging Contrast Agents. Materials<br>Research Society Symposia Proceedings, 1991, 233, 225.                                                                                    | 0.1 | 6         |
| 177 | The encapsulation of Rh(III) phthalocyanines in zeolites X and Y. Journal of Inclusion Phenomena and<br>Macrocyclic Chemistry, 1991, 10, 141-151.                                                                                         | 1.6 | 32        |
| 178 | The preparation and characterization of Rh(III) SALEN complexes encapsulated in zeolites X and Y.<br>Zeolites, 1990, 10, 722-729.                                                                                                         | 0.9 | 61        |
| 179 | Organometallic reactions of rhodium octaethylporphyrin species in pyridine. Heterolytic cleavage of<br>[(OEP)Rh]2 and metalloanion activation of carbon monoxide. Organometallics, 1989, 8, 950-955.                                      | 1.1 | 41        |
| 180 | Cobalt(II)-facilitated transport of dioxygen in a polystyrene membrane. Inorganic Chemistry, 1986, 25, 716-718.                                                                                                                           | 1.9 | 44        |