Bettina Schaefli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7727000/publications.pdf

Version: 2024-02-01

172386 149623 4,613 56 29 56 citations h-index g-index papers 162 162 162 5250 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Future water temperature of rivers in Switzerland under climate change investigated with physics-based models. Hydrology and Earth System Sciences, 2022, 26, 1063-1087.	1.9	16
2	Hydrological Drivers of Bedload Transport in an Alpine Watershed. Water Resources Research, 2022, 58, .	1.7	9
3	Contrasting changes in hydrological processes of the Volta River basin under global warming. Hydrology and Earth System Sciences, 2022, 26, 1481-1506.	1.9	12
4	Why do we have so many different hydrological models? A review based on the case of Switzerland. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	2.8	16
5	Influence of warming and atmospheric circulation changes on multidecadal European flood variability. Climate of the Past, 2022, 18, 919-933.	1.3	6
6	On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe. Hydrology and Earth System Sciences, 2022, 26, 2649-2669.	1.9	6
7	Low-flow behavior of alpine catchments with varying quaternary cover under current and future climatic conditions. Journal of Hydrology, 2021, 592, 125591.	2.3	20
8	Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment. Hydrology and Earth System Sciences, 2021, 25, 735-753.	1.9	5
9	Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment. Hydrology and Earth System Sciences, 2021, 25, 2301-2325.	1.9	12
10	Seasonal snow cover decreases young water fractions in high Alpine catchments. Hydrological Processes, 2020, 34, 4794-4813.	1.1	15
11	HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources. Geoscientific Model Development, 2020, 13, 2433-2450.	1.3	16
12	Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 2020, 143, 103667.	1.7	62
13	Comparing MODIS snow products Collection 5 with Collection 6 over Italian Central Apennines. International Journal of Remote Sensing, 2020, 41, 4174-4205.	1.3	19
14	Stream temperature and discharge evolution in Switzerland over the last 50Âyears: annual and seasonal behaviour. Hydrology and Earth System Sciences, 2020, 24, 115-142.	1.9	55
15	Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets. Water Resources Research, 2020, 56, e2019WR026085.	1.7	93
16	Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa. Hydrology and Earth System Sciences, 2020, 24, 5379-5406.	1.9	48
17	Downsizing parameter ensembles for simulations of rare floods. Natural Hazards and Earth System Sciences, 2020, 20, 3521-3549.	1.5	9
18	The role of glacier retreat for Swiss hydropower production. Renewable Energy, 2019, 132, 615-627.	4.3	56

#	Article	IF	Citations
19	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	1.2	474
20	Estimation of streamflow recession parameters: New insights from an analytic streamflow distribution model. Hydrological Processes, 2019, 33, 1595-1609.	1.1	19
21	Gap-filling of daily streamflow time series using Direct Sampling in various hydroclimatic settings. Journal of Hydrology, 2019, 569, 573-586.	2.3	43
22	Swiss Rainfall Mass Curves and their Influence on Extreme Flood Simulation. Water Resources Management, 2018, 32, 2625-2638.	1.9	8
23	Analytical flow duration curves for summer streamflow in Switzerland. Hydrology and Earth System Sciences, 2018, 22, 2377-2389.	1.9	15
24	Understanding snow hydrological processes through the lens of stable water isotopes. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1311.	2.8	76
25	Spatial interpolation of precipitation from multiple rain gauge networks and weather radar data for operational applications in Alpine catchments. Journal of Hydrology, 2018, 563, 1092-1110.	2.3	51
26	New Approach to Identifying Critical Initial Conditions for Extreme Flood Simulations in a Semicontinuous Simulation Framework. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	5
27	Relevance of the correlation between precipitation and the 0 °C isothermal altitude for extreme flood estimation. Journal of Hydrology, 2017, 551, 177-187.	2.3	5
28	Bayesian spectral likelihood for hydrological parameter inference. Water Resources Research, 2017, 53, 6857-6884.	1.7	8
29	Snow hydrology signatures for model identification within a limitsâ€ofâ€acceptability approach. Hydrological Processes, 2016, 30, 4019-4035.	1.1	23
30	Improving the theoretical underpinnings of processâ€based hydrologic models. Water Resources Research, 2016, 52, 2350-2365.	1.7	80
31	Thermodynamics in the hydrologic response: Travel time formulation and application to <scp>A</scp> lpine catchments. Water Resources Research, 2015, 51, 1671-1687.	1.7	20
32	Scaleâ€dependent effects of solar radiation patterns on the snowâ€dominated hydrologic response. Geophysical Research Letters, 2015, 42, 3895-3902.	1.5	35
33	Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model. Hydrology and Earth System Sciences, 2015, 19, 3727-3753.	1.9	37
34	Projecting hydropower production under future climates: a guide for decisionâ€makers and modelers to interpret and design climate change impact assessments. Wiley Interdisciplinary Reviews: Water, 2015, 2, 271-289.	2.8	71
35	SEHR-ECHO v1.0: a Spatially Explicit Hydrologic Response model for ecohydrologic applications. Geoscientific Model Development, 2014, 7, 2733-2746.	1.3	29
36	Analytic probability distributions for snowâ€dominated streamflow. Water Resources Research, 2013, 49, 2701-2713.	1.7	37

#	Article	IF	Citations
37	Improving the degree-day method for sub-daily melt simulations with physically-based diurnal variations. Advances in Water Resources, 2013, 55, 149-164.	1.7	37
38	"Panta Rhei—Everything Flows― Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	1.2	569
39	Snowfall Limit Forecasts and Hydrological Modeling. Journal of Hydrometeorology, 2012, 13, 1507-1519.	0.7	19
40	A robust framework for probabilistic precipitations downscaling from an ensemble of climate predictions applied to Switzerland. Journal of Geophysical Research, 2012, 117, .	3.3	15
41	An analytical model for soil-atmosphere feedback. Hydrology and Earth System Sciences, 2012, 16, 1863-1878.	1.9	11
42	Toward a robust method for subdaily rainfall downscaling from daily data. Water Resources Research, 2011, 47, .	1.7	30
43	Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences, 2011, 15, 1227-1241.	1.9	57
44	HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences, 2011, 15, 635-646.	1.9	82
45	Signature-based model calibration for hydrological prediction in mesoscale Alpine catchments. Hydrological Sciences Journal, 2010, 55, 1002-1016.	1.2	53
46	Origin and fate of atmospheric moisture over continents. Water Resources Research, 2010, 46, .	1.7	586
47	Analysing the temporal dynamics of model performance for hydrological models. Hydrology and Earth System Sciences, 2009, 13, 999-1018.	1.9	85
48	Hydrological model performance and parameter estimation in the wavelet-domain. Hydrology and Earth System Sciences, 2009, 13, 1921-1936.	1.9	44
49	On the calibration of hydrological models in ungauged basins: A framework for integrating hard and soft hydrological information. Water Resources Research, 2009, 45, .	1.7	162
50	Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 2007, 332, 303-315.	2.3	94
51	Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrology and Earth System Sciences, 2007, 11, 1191-1205.	1.9	214
52	Accounting for global-mean warming and scaling uncertainties in climate change impact studies: application to a regulated lake system. Hydrology and Earth System Sciences, 2007, 11, 1207-1226.	1.9	17
53	Do Nash values have value?. Hydrological Processes, 2007, 21, 2075-2080.	1.1	486
54	What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Advances in Water Resources, 2007, 30, 2511-2525.	1.7	106

#	Article	IF	CITATIONS
55	Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrological Processes, 2006, 20, 2091-2109.	1.1	199
56	A conceptual glacio-hydrological model for high mountainous catchments. Hydrology and Earth System Sciences, 2005, 9, 95-109.	1.9	159