Deyong Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726868/publications.pdf

Version: 2024-02-01

		304743	361022
38	1,346	22	35
papers	citations	h-index	g-index
38	38	38	1229
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses. Crop Journal, 2022, 10, 310-322.	5.2	7
2	UDPâ€ <i>N</i> à€acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytologist, 2022, 233, 344-359.	7.3	19
3	LMPA Regulates Lesion Mimic Leaf and Panicle Development Through ROS-Induced PCD in Rice. Frontiers in Plant Science, 2022, 13, 875038.	3.6	7
4	Fine Mapping of Rice Specific MR1, a Gene Determines Palea Identity. Frontiers in Plant Science, 2022, 13, .	3.6	0
5	LRG1 maintains sterile lemma identity by regulating OsMADS6 expression in rice. Science China Life Sciences, 2021, 64, 1190-1192.	4.9	4
6	Disruption of <i>EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant Journal, 2021, 105, 942-956.</i>	5 . 7	56
7	The rice LRR-like1 protein YELLOW AND PREMATURE DWARF 1 is involved in leaf senescence induced by high light. Journal of Experimental Botany, 2021, 72, 1589-1605.	4.8	10
8	<i>>PHOTOâ€SENSITIVE LEAF ROLLING 1</i> encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytologist, 2021, 229, 890-901.	7.3	40
9	The ell1 mutation disrupts tryptophan metabolism and induces cell death. Plant Signaling and Behavior, 2021, 16, 1905336.	2.4	1
10	Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice. Agriculture (Switzerland), 2021, 11, 611.	3.1	16
11	<i>WHITE AND LESIONâ€MIMIC LEAF1</i> , encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice. Plant Journal, 2021, 108, 1690-1703.	5.7	8
12	Using <i>Heading date 1</i> preponderant alleles from <i>indica</i> cultivars to breed highâ€yield, highâ€quality <i>japonica</i> rice varieties for cultivation in south China. Plant Biotechnology Journal, 2020, 18, 119-128.	8. 3	30
13	Multifloret spikelet improves rice yield. New Phytologist, 2020, 225, 2301-2306.	7.3	28
14	ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Science China Life Sciences, 2020, 63, 228-238.	4.9	28
15	MORE FLORET1 Encodes a MYB Transcription Factor That Regulates Spikelet Development in Rice. Plant Physiology, 2020, 184, 251-265.	4.8	16
16	Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiology and Biochemistry, 2020, 157, 359-369.	5 . 8	17
17	The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Science Bulletin, 2020, 65, 753-764.	9.0	16
18	Natural variation in the promoter of <i>TGW2</i> determines grain width and weight in rice. New Phytologist, 2020, 227, 629-640.	7.3	89

#	Article	IF	CITATIONS
19	Primary leafâ€type ferredoxinÂ1 participates in photosynthetic electron transport and carbon assimilation in rice. Plant Journal, 2020, 104, 44-58.	5.7	26
20	Short-term stress from high light and high temperature triggers transcriptomic changes in the <i>local lesions 1</i> rice mutant. Plant Signaling and Behavior, 2019, 14, e1649568.	2.4	0
21	<i><scp>AH</scp>2</i> encodes a <scp>MYB</scp> domain protein that determines hull fate and affects grain yield and quality in rice. Plant Journal, 2019, 100, 813-824.	5 . 7	36
22	Characterization, Expression, and Interaction Analyses of OsMORF Gene Family in Rice. Genes, 2019, 10, 694.	2.4	10
23	FON 4 prevents the multiâ€floret spikelet in rice. Plant Biotechnology Journal, 2019, 17, 1007-1009.	8.3	29
24	Os <scp>ACL</scp> â€A2 negatively regulates cell death and disease resistance in rice. Plant Biotechnology Journal, 2019, 17, 1344-1356.	8.3	46
25	DNA damage and reactive oxygen species cause cell death in the rice <i>local lesions 1</i> mutant under high light and high temperature. New Phytologist, 2019, 222, 349-365.	7.3	44
26	Functional Analysis of Three Rice Chloroplast Transit Peptides. Rice Science, 2019, 26, 11-20.	3.9	3
27	The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Science, 2018, 267, 168-179.	3 . 6	70
28	â€Twoâ€floret spikelet' as a novel resource has the potential to increase rice yield. Plant Biotechnology Journal, 2018, 16, 351-353.	8.3	34
29	The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. Rice, 2018, 11, 39.	4.0	35
30	Genetic analysis and fine-mapping of a new rice mutant, white and lesion mimic leaf1. Plant Growth Regulation, 2018, 85, 425-435.	3.4	20
31	FZP determines grain size and sterile lemma fate in rice. Journal of Experimental Botany, 2018, 69, 4853-4866.	4.8	45
32	A Rice <i>PECTATE LYASE-LIKE</i> Gene Is Required for Plant Growth and Leaf Senescence. Plant Physiology, 2017, 174, 1151-1166.	4.8	96
33	Mutation of OsNaPRT1 in the NAD Salvage Pathway Leads to Withered Leaf Tips in Rice. Plant Physiology, 2016, 171, pp.01898.2015.	4.8	50
34	Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Rice, 2016, 9, 4.	4.0	38
35	<i>$PGL < li> >$, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016, 67, 1297-1310.</i>	4.8	109
36	Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice. PLoS ONE, 2015, 10, e0143361.	2.5	31

#	Article	IF	Citations
37	<i>MULTI-FLORET SPIKELET1</i> , Which Encodes an AP2/ERF Protein, Determines Spikelet Meristem Fate and Sterile Lemma Identity in Rice Â. Plant Physiology, 2013, 162, 872-884.	4.8	122
38	<i>CHIMERIC FLORAL ORGANS1</i> , Encoding a Monocot-Specific MADS Box Protein, Regulates Floral Organ Identity in Rice Â. Plant Physiology, 2012, 160, 788-807.	4.8	110