
Edward Beighley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resources Research, 2019, 55, 1737-1772.	1.7	281
2	Effects of Land Cover on Stream Ecosystems: Roles of Empirical Models and Scaling Issues. Ecosystems, 2003, 6, 407-423.	1.6	174
3	Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 2016, 136, 555-570.	1.7	147
4	Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 2016, 54, 378-409.	9.0	145
5	Assessing the potential global extent of SWOT river discharge observations. Journal of Hydrology, 2014, 519, 1516-1525.	2.3	142
6	Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sensing of Environment, 2011, 115, 3530-3538.	4.6	128
7	Global Relationships Between River Width, Slope, Catchment Area, Meander Wavelength, Sinuosity, and Discharge. Geophysical Research Letters, 2019, 46, 3252-3262.	1.5	91
8	Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrological Processes, 2011, 25, 3216-3229.	1.1	83
9	IMPACTS OF CALIFORNIA'S CLIMATIC REGIMES AND COASTAL LAND USE CHANGE ON STREAMFLOW CHARACTERISTICS. Journal of the American Water Resources Association, 2003, 39, 1419-1433.	1.0	80
10	Trend Assessment in Rainfall-Runoff Behavior in Urbanizing Watersheds. Journal of Hydrologic Engineering - ASCE, 2002, 7, 27-34.	0.8	75
11	Hydrologic evaluation of satellite and reanalysis precipitation datasets over a mid-latitude basin. Atmospheric Research, 2015, 164-165, 37-48.	1.8	58
12	Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sensing of Environment, 2015, 159, 70-79.	4.6	53
13	In Quest of Calibration Density and Consistency in Hydrologic Modeling: Distributed Parameter Calibration against Streamflow Characteristics. Water Resources Research, 2019, 55, 7784-7803.	1.7	44
14	Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry. Remote Sensing of Environment, 2017, 201, 57-72.	4.6	42
15	Ensemble learning regression for estimating river discharges using satellite altimetry data: Central Congo River as a Test-bed. Remote Sensing of Environment, 2019, 221, 741-755.	4.6	42
16	SPATIALLY EXPLICIT HYDROLOGIC MODELING OF LAND USE CHANGE. Journal of the American Water Resources Association, 2002, 38, 241-252.	1.0	41
17	Developing channel and floodplain dimensions with limited data: a case study in the Amazon Basin. Earth Surface Processes and Landforms, 2011, 36, 1059-1071.	1.2	38
18	A LISFLOOD-FP hydraulic model of the middle reach of the Congo. Journal of Hydrology, 2020, 580, 124203.	2.3	37

EDWARD BEIGHLEY

#	Article	IF	CITATIONS
19	Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sensing, 2017, 9, 1138.	1.8	36
20	Mapping spatio-temporal water level variations over the central Congo River using PALSAR ScanSAR and Envisat altimetry data. International Journal of Remote Sensing, 2017, 38, 7021-7040.	1.3	34
21	Effects of Impervious Area Estimation Methods on Simulated Peak Discharges. Journal of Hydrologic Engineering - ASCE, 2009, 14, 388-398.	0.8	30
22	A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean and Coastal Management, 2019, 182, 104921.	2.0	30
23	Impacts of Climate Variability and Land Use Alterations on Frequency Distributions of Terrestrial Runoff Loading to Coastal Waters in Southern California ¹ . Journal of the American Water Resources Association, 2008, 44, 62-74.	1.0	28
24	Temperature and Precipitation Trends in Lebanon's Largest River: The Litani Basin. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 86-95.	1.3	25
25	Improved error estimates of a discharge algorithm for remotely sensed river measurements: Test cases on <scp>S</scp> acramento and <scp>G</scp> aronne <scp>R</scp> ivers. Water Resources Research, 2016, 52, 278-294.	1.7	25
26	Seasonal flow frequency analysis. Journal of Hydrology, 2003, 279, 43-56.	2.3	24
27	Simulating streamflow on regulated rivers using characteristic reservoir storage patterns derived from synthetic remote sensing data. Hydrological Processes, 2015, 29, 2014-2026.	1.1	23
28	Local-To-Regional Landscape Drivers of Extreme Weather and Climate: Implications for Water Infrastructure Resilience. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	22
29	Estimating Flood Discharges in Reservoir-Regulated River Basins by Integrating Synthetic SWOT Satellite Observations and Hydrologic Modeling. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	21
30	Using GRACE in a streamflow recession to determine drainable water storage in the Mississippi River basin. Hydrology and Earth System Sciences, 2019, 23, 3269-3277.	1.9	19
31	Identifying uncertainties in hydrologic fluxes and seasonality from hydrologic model components for climate change impact assessments. Hydrology and Earth System Sciences, 2020, 24, 2253-2267.	1.9	19
32	Using GIS to Determine Extent of Gauged Streams in a Region. Journal of Hydrologic Engineering - ASCE, 2000, 5, 190-196.	0.8	16
33	Propagation of future climate conditions into hydrologic response from coastal southern California watersheds. Climatic Change, 2019, 153, 199-218.	1.7	16
34	Combining Optical Remote Sensing, McFLI Discharge Estimation, Global Hydrologic Modeling, and Data Assimilation to Improve Daily Discharge Estimates Across an Entire Large Watershed. Water Resources Research, 2021, 57, e2020WR027794.	1.7	16
35	A hydrologic routing model suitable for climateâ€scale simulations of arctic rivers: application to the Mackenzie River Basin. Hydrological Processes, 2015, 29, 2751-2768.	1.1	14
36	How Does the Unique Spaceâ€Time Sampling of the SWOT Mission Influence River Discharge Series Characteristics?. Geophysical Research Letters, 2019, 46, 8154-8161.	1.5	14

EDWARD BEIGHLEY

#	Article	IF	CITATIONS
37	Inter-annual temperature and precipitation variations over the Litani Basin in response to atmospheric circulation patterns. Theoretical and Applied Climatology, 2012, 108, 563-577.	1.3	13
38	Biogeographic gradients in ecosystem processes of the invasive ecosystem engineer Phragmites australis. Biological Invasions, 2016, 18, 2577-2595.	1.2	13
39	Sensor-based detection of algal blooms for public health advisories and long-term monitoring. Science of the Total Environment, 2021, 767, 144984.	3.9	13
40	Largeâ€6cale Performance and Design for Construction Activity Erosion Control Best Management Practices. Journal of Environmental Quality, 2009, 38, 1248-1254.	1.0	12
41	Modelling streamflow trends for a watershed with limited data: case of the Litani basin, Lebanon. Hydrological Sciences Journal, 2012, 57, 1516-1529.	1.2	11
42	Spatial and Temporal Variations in Eastern <scp>U.S.</scp> Hydrology: Responses to Global Climate Variability. Journal of the American Water Resources Association, 2016, 52, 1089-1108.	1.0	11
43	Integrating Lateral Inflows Into a SWOT Mission River Discharge Algorithm. Water Resources Research, 2020, 56, e2019WR026589.	1.7	10
44	Underlying Fundamentals of Kalman Filtering for River Network Modeling. Journal of Hydrometeorology, 2020, 21, 453-474.	0.7	10
45	Estimating discharges for poorly gauged river basin using ensemble learning regression with satellite altimetry data and a hydrologic model. Advances in Space Research, 2021, 68, 607-618.	1.2	10
46	Engaging the User Community for Advancing Societal Applications of the Surface Water Ocean Topography Mission. Bulletin of the American Meteorological Society, 2017, 98, ES285-ES290.	1.7	9
47	Future climate impacts on the hydrology of headwater streams in the Amazon River Basin: Implications for migratory goliath catfishes. Hydrological Processes, 2020, 34, 5402-5416.	1.1	8
48	The Early Adopter Program for the Surface Water Ocean Topography Satellite Mission: Lessons Learned in Building User Engagement during the Prelaunch Era. Bulletin of the American Meteorological Society, 2020, 101, E259-E264.	1.7	8
49	Subsurface Response Model for Storm Events within Susquehanna River Basin. Journal of Hydrologic Engineering - ASCE, 2002, 7, 185-191.	0.8	7
50	Runoff Characteristics for Construction Site Erosion Control Practices. Journal of Irrigation and Drainage Engineering - ASCE, 2010, 136, 405-413.	0.6	7
51	Review of Approaches and Recommendations for Improving Resilience of Water Management Infrastructure: The Case for Large Dams. Journal of Infrastructure Systems, 2017, 23, .	1.0	7
52	Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198.	2.3	7
53	What Do Experienced Water Managers Think of Water Resources of Our Nation and Its Management Infrastructure?. PLoS ONE, 2015, 10, e0142073.	1.1	7
54	Adsorption of Phosphate by Goethite and Zeolite: Effects of Humic Substances from Green Waste Compost. Compost Science and Utilization, 2011, 19, 197-204.	1.2	6

EDWARD BEIGHLEY

0

#	Article	IF	CITATIONS
55	The Applicability of SWOT's Non-Uniform Space–Time Sampling in Hydrologic Model Calibration. Remote Sensing, 2020, 12, 3241.	1.8	6
56	Slope Interrupter Best Management Practice Experiments on a Tilting Soil Bed with Simulated Rainfall. Journal of Irrigation and Drainage Engineering - ASCE, 2009, 135, 480-486.	0.6	5
57	Predicting Model Uncertainty at River Junctions due to Drainage Network Structure. Journal of Hydrologic Engineering - ASCE, 2009, 14, 499-507.	0.8	4
58	Evaluation of Soil Erosion and Sediment Control Products for Release of Heavy Metals. Environmental Engineering Science, 2010, 27, 905-914.	0.8	4
59	Upscaling Surface Runoff Routing Processes in Large-Scale Hydrologic Models: Application to the Ohio River Basin. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	4
60	Characterizing Potential Water Quality Impacts from Soils Treated with Dust Suppressants. Journal of Environmental Quality, 2009, 38, 502-512.	1.0	3
61	Leveraging River Network Topology and Regionalization to Expand SWOT-Derived River Discharge Time Series in the Mississippi River Basin. Remote Sensing, 2021, 13, 1590.	1.8	3
62	Hack's law of debris-flow basins. International Journal of Sediment Research, 2009, 24, 74-87.	1.8	2
63	Flood Frequency Hydrology with Limited Data for the Weser River Basin, Germany. Journal of Hydrologic Engineering - ASCE, 2019, 24, 05019002.	0.8	2
64	Survey of Water Managers for Twenty-First Century Challenges. , 2020, , 21-34.		1
65	Current Approaches for Resilience Assessment. , 2020, , 35-43.		1
66	Development of a Model to Predict Runoff Water Headloss Through Compost Filter Berms. Compost Science and Utilization, 2012, 20, 207-214.	1.2	0
67	Evaluation of Best Management Practice Products in Preventing Discharge of Metals: A Laboratory Evaluation. Journal of Environmental Quality, 2012, 41, 800-806.	1.0	0

Resilience of Water Management Infrastructure. , 2020, , 1-20.

5