Katrina J Binger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seeing your partner: Structural elucidation of the first C8 tetraspanin protein. Structure, 2022, 30, 203-205.	1.6	0
2	Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization. Cell Reports, 2022, 39, 110719.	2.9	13
3	Tetraspanin CD82 restrains phagocyte migration but supports macrophage activation. IScience, 2022, 25, 104520.	1.9	5
4	Identification of Metabolically Quiescent <i>Leishmania mexicana</i> Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. MBio, 2021, 12, .	1.8	19
5	Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes. Circulation, 2021, 144, 144-158.	1.6	32
6	Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L-Selectin Surface Expression. IScience, 2020, 23, 101104.	1.9	19
7	NCX1 represents an ionic Na+ sensing mechanism in macrophages. PLoS Biology, 2020, 18, e3000722.	2.6	22
8	The amalgamation of cellular metabolism and immunology for host immunity. Clinical and Translational Immunology, 2020, 9, e1123.	1.7	0
9	Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 2019, 51, 285-297.e5.	6.6	378
10	Atp6ap2 deletion causes extensive vacuolation that consumes the insulin content of pancreatic β cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19983-19988.	3.3	23
11	HIF1A and NFAT5 coordinate Na ⁺ -boosted antibacterial defense via enhanced autophagy and autolysosomal targeting. Autophagy, 2019, 15, 1899-1916.	4.3	39
12	Autocrine IFN-I inhibits isocitrate dehydrogenase in the TCA cycle of LPS-stimulated macrophages. Journal of Clinical Investigation, 2019, 129, 4239-4244.	3.9	45
13	Elementary immunology: Na+ as a regulator of immunity. Pediatric Nephrology, 2017, 32, 201-210.	0.9	55
14	Macrophage heterogeneity and renin-angiotensin system disorders. Pflugers Archiv European Journal of Physiology, 2017, 469, 445-454.	1.3	5
15	Immunometabolic Regulation of Interleukin-17-Producing T Helper Cells: Uncoupling New Targets for Autoimmunity. Frontiers in Immunology, 2017, 8, 311.	2.2	26
16	Sodium chloride, SGK1, and Th17 activation. Pflugers Archiv European Journal of Physiology, 2015, 467, 543-550.	1.3	38
17	Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense. Cell Metabolism, 2015, 21, 493-501.	7.2	252
18	New role for the (pro)renin receptor in T-cell development. Blood, 2015, 126, 504-507.	0.6	20

Katrina J Binger

#	Article	IF	CITATIONS
19	High salt reduces the activation of IL-4– and IL-13–stimulated macrophages. Journal of Clinical Investigation, 2015, 125, 4223-4238.	3.9	229
20	Macrophages in homeostatic immune function. Frontiers in Physiology, 2014, 5, 146.	1.3	58
21	Bcl10 Mediates Angiotensin II–Induced Cardiac Damage and Electrical Remodeling. Hypertension, 2014, 64, 1032-1039.	1.3	21
22	Avoiding the oligomeric state: αBâ€crystallin inhibits fragmentation and induces dissociation of apolipoprotein Câ€II amyloid fibrils. FASEB Journal, 2013, 27, 1214-1222.	0.2	47
23	Autophagy and the (Pro)renin Receptor. Frontiers in Endocrinology, 2013, 4, 155.	1.5	25
24	Interferon-γ Signaling Inhibition Ameliorates Angiotensin Il–Induced Cardiac Damage. Hypertension, 2012, 60, 1430-1436.	1.3	149
25	Neovascularization Is Attenuated With Aldosterone Synthase Inhibition in Rats With Retinopathy. Hypertension, 2012, 59, 607-613.	1.3	61
26	Prorenin receptor regulates more than the renin-angiotensin system. Annals of Medicine, 2012, 44, S43-S48.	1.5	12
27	An Equilibrium Model for Linear and Closed-Loop Amyloid Fibril Formation. Journal of Molecular Biology, 2012, 421, 364-377.	2.0	19
28	Identification of an amyloid fibril forming peptide comprising residues 46–59 of apolipoprotein Aâ€I. FEBS Letters, 2012, 586, 1754-1758.	1.3	25
29	A Structural Model for Apolipoprotein C-II Amyloid Fibrils: Experimental Characterization and Molecular Dynamics Simulations. Journal of Molecular Biology, 2011, 405, 1246-1266.	2.0	45
30	Prorenin and the (pro)renin receptor: recent advances and implications for retinal development and disease. Current Opinion in Nephrology and Hypertension, 2011, 20, 69-76.	1.0	13
31	Aliskiren reduces vascular pathology in diabetic retinopathy and oxygen-induced retinopathy in the transgenic (mRen-2)27 rat. Diabetologia, 2011, 54, 2724-2735.	2.9	31
32	Candesartan Attenuates Diabetic Retinal Vascular Pathology by Restoring Glyoxalase-I Function. Diabetes, 2010, 59, 3208-3215.	0.3	95
33	RILLKKMPSV Influences the Vasculature, Neurons and Glia, and (Pro)Renin Receptor Expression in the Retina. Hypertension, 2010, 55, 1454-1460.	1.3	61
34	Methionine-Oxidized Amyloid Fibrils Are Poor Substrates for Human Methionine Sulfoxide Reductases A and B2. Biochemistry, 2010, 49, 2981-2983.	1.2	14
35	Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1977-1982.	3.3	87
36	Effect of Oxidation and Mutation on the Conformational Dynamics and Fibril Assembly of Amyloidogenic Peptides Derived from Apolipoprotein C-II. Journal of Physical Chemistry B, 2009, 113, 14006-14014.	1.2	15

Katrina J Binger

#	Article	IF	CITATIONS
37	Apolipoprotein C-II Amyloid Fibrils Assemble via a Reversible Pathway that Includes Fibril Breaking and Rejoining. Journal of Molecular Biology, 2008, 376, 1116-1129.	2.0	66
38	Methionine Oxidation Inhibits Assembly and Promotes Disassembly of Apolipoprotein C-II Amyloid Fibrils. Biochemistry, 2008, 47, 10208-10217.	1.2	35
39	A Structural Core Within Apolipoprotein C-II Amyloid Fibrils Identified Using Hydrogen Exchange and Proteolysis. Journal of Molecular Biology, 2007, 366, 1639-1651.	2.0	53