Paul A Newman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7726331/publications.pdf

Version: 2024-02-01

216 papers 13,048 citations

59 h-index 101 g-index

248 all docs

248 docs citations

times ranked

248

6249 citing authors

#	Article	IF	CITATIONS
1	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	3.3	39
2	Seasonal Prediction of the Quasiâ€Biennial Oscillation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
3	Stratospheric Impacts of Continuing CFCâ€11 Emissions Simulated in a Chemistryâ€Climate Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033656.	3.3	O
4	The 2019 Southern Hemisphere Stratospheric Polar Vortex Weakening and Its Impacts. Bulletin of the American Meteorological Society, 2021, 102, E1150-E1171.	3.3	55
5	Huge gaps in detection networks plague emissions monitoring. Nature, 2021, 595, 491-493.	27.8	4
6	Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.	4.9	5
7	Antarctica and the Southern Ocean. Bulletin of the American Meteorological Society, 2021, 102, S317-S356.	3.3	12
8	The Montreal Protocol protects the terrestrial carbon sink. Nature, 2021, 596, 384-388.	27.8	38
9	Prospect of Increased Disruption to the QBO in a Changing Climate. Geophysical Research Letters, 2021, 48, e2021GL093058.	4.0	28
10	Tracking aerosols and SO ₂ clouds from the Raikoke eruption: 3D view from satellite observations. Atmospheric Measurement Techniques, 2021, 14, 7545-7563.	3.1	18
11	The Remarkably Strong Arctic Stratospheric Polar Vortex of Winter 2020: Links to Recordâ€Breaking Arctic Oscillation and Ozone Loss. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033271.	3.3	119
12	Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere–ocean Goddard Earth Observing System Chemistry-Climate Model. Climate Dynamics, 2020, 55, 1585-1595.	3.8	20
13	Seasonal Variation of the Quasiâ€Biennial Oscillation Descent. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033077.	3.3	13
14	Spatial heterogeneity in CO ₂ , CH ₄ , and energy fluxes: insights from airborne eddy covariance measurements over the Mid-Atlantic region. Environmental Research Letters, 2020, 15, 035008.	5.2	19
15	The Impact of Continuing CFCâ€11 Emissions on Stratospheric Ozone. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031849.	3.3	20
16	Antarctica and the Southern Ocean. Bulletin of the American Meteorological Society, 2020, 101, S287-S320.	3.3	15
17	Rare forecasted climate event under way in the Southern Hemisphere. Nature, 2019, 573, 495-495.	27.8	18
18	Success of Montreal Protocol Demonstrated by Comparing High-Quality UV Measurements with "World Avoided―Calculations from Two Chemistry-Climate Models. Scientific Reports, 2019, 9, 12332.	3.3	44

#	Article	IF	CITATIONS
19	Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960–2010. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2098-2110.	3.3	16
20	Current sources of carbon tetrachloride (CCl ₄) in our atmosphere. Environmental Research Letters, 2018, 13, 024004.	5.2	47
21	The way forward for Montreal Protocol science. Comptes Rendus - Geoscience, 2018, 350, 442-447.	1.2	8
22	Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling. Atmospheric Chemistry and Physics, 2018, 18, 10955-10971.	4.9	10
23	The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 2018, 18, 5699-5745.	4.9	259
24	The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology. Atmospheric Measurement Techniques, 2018, 11, 1757-1776.	3.1	29
25	The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific. Bulletin of the American Meteorological Society, 2017, 98, 129-143.	3.3	79
26	The Quadrennial Ozone Symposium 2016. Advances in Atmospheric Sciences, 2017, 34, 283-288.	4.3	2
27	Dynamics of the Disrupted 2015/16 Quasi-Biennial Oscillation. Journal of Climate, 2017, 30, 5661-5674.	3.2	61
28	The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere. Geophysical Research Letters, 2017, 44, 4280-4286.	4.0	16
29	Deriving Global OH Abundance and Atmospheric Lifetimes for Longâ€Lived Gases: A Search for CH ₃ CCl ₃ Alternatives. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,914.	3.3	26
30	Response of trace gases to the disrupted 2015–2016 quasi-biennial oscillation. Atmospheric Chemistry and Physics, 2017, 17, 6813-6823.	4.9	39
31	Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5). Journal of Climate, 2016, 29, 3199-3218.	3.2	36
32	NASA's Hurricane and Severe Storm Sentinel (HS3) Investigation. Bulletin of the American Meteorological Society, 2016, 97, 2085-2102.	3.3	53
33	The anomalous change in the QBO in 2015–2016. Geophysical Research Letters, 2016, 43, 8791-8797.	4.0	139
34	The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface. Journals of the Atmospheric Sciences, 2016, 73, 3785-3802.	1.7	26
35	20 years of CIO measurements in the Antarctic lower stratosphere. Atmospheric Chemistry and Physics, 2016, 16, 10725-10734.	4.9	9
36	Early action on HFCs mitigates future atmospheric change. Environmental Research Letters, 2016, 11, 114019.	5.2	10

#	Article	IF	Citations
37	Ozone depletion by hydrofluorocarbons. Geophysical Research Letters, 2015, 42, 8686-8692.	4.0	39
38	Air-mass Origin in the Arctic. Part II: Response to Increases in Greenhouse Gases. Journal of Climate, 2015, 28, 9105-9120.	3.2	11
39	Airâ€mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air. Geophysical Research Letters, 2015, 42, 4240-4248.	4.0	44
40	Airmass Origin in the Arctic. Part I: Seasonality. Journal of Climate, 2015, 28, 4997-5014.	3.2	18
41	Reply to "Comments on â€~The Unusual Southern Hemisphere Winter of 2002'― Journals of the Atmospheric Sciences, 2014, 71, 4706-4709.	1.7	0
42	Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. Journal of Geophysical Research D: Atmospheres, 2014, 119, 14,098.	3.3	22
43	Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5671-5699.	3.3	40
44	Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6196-6206.	3.3	30
45	Constraining the carbon tetrachloride (CCl ₄) budget using its global trend and interâ€hemispheric gradient. Geophysical Research Letters, 2014, 41, 5307-5315.	4.0	38
46	The Antarctic ozone hole: An update. Physics Today, 2014, 67, 42-48.	0.3	23
47	Seasonal ventilation of the stratosphere: Robust diagnostics from oneâ€way flux distributions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 293-306.	3.3	7
48	Modifications of the quasiâ€biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophysical Research Letters, 2014, 41, 1738-1744.	4.0	90
49	Measuring the Antarctic ozone hole with the new Ozone Mapping and Profiler Suite (OMPS). Atmospheric Chemistry and Physics, 2014, 14, 2353-2361.	4.9	41
50	New stratospheric dust belt due to the Chelyabinsk bolide. Geophysical Research Letters, 2013, 40, 4728-4733.	4.0	51
51	The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at Southern and Northern Midlatitudes. Journals of the Atmospheric Sciences, 2013, 70, 894-900.	1.7	81
52	Net influence of an internally generated quasi-biennial oscillation on modelled stratospheric climate and chemistry. Atmospheric Chemistry and Physics, 2013, 13, 12187-12197.	4.9	6
53	Sensitivity of the atmospheric response to warm pool El Ni $\tilde{A}\pm 0$ events to modeled SSTs and future climate forcings. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,371.	3.3	12
54	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	3.3	129

#	Article	IF	CITATIONS
55	The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1563-1576.	3.3	60
56	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	3.3	121
57	On the influence of North Pacific sea surface temperature on the Arctic winter climate. Journal of Geophysical Research, 2012, 117, .	3.3	92
58	Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). Journal of Geophysical Research, 2012, 117, .	3.3	29
59	Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. Journal of Geophysical Research, 2012, 117, .	3.3	77
60	Longâ€term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistryâ€Climate Model (GEOSCCM). Journal of Geophysical Research, 2012, 117, .	3.3	24
61	UV impacts avoided by the Montreal Protocol. Photochemical and Photobiological Sciences, 2011, 10, 1152-1160.	2.9	48
62	Multimodel climate and variability of the stratosphere. Journal of Geophysical Research, 2011, 116, .	3.3	139
63	The Impact of Stratospheric Ozone Changes on Downward Wave Coupling in the Southern Hemisphere*. Journal of Climate, 2011, 24, 4210-4229.	3.2	21
64	The Arctic vortex in March 2011: a dynamical perspective. Atmospheric Chemistry and Physics, 2011, 11, 11447-11453.	4.9	60
65	Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects. Atmospheric Chemistry and Physics, 2011, 11, 7533-7545.	4.9	75
66	Response of the Antarctic stratosphere to warm pool El Ni $\tilde{A}\pm o$ Events in the GEOS CCM. Atmospheric Chemistry and Physics, 2011, 11, 9659-9669.	4.9	35
67	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	3.3	135
68	Response of the Antarctic Stratosphere to Two Types of El Ni $\tilde{A}\pm o$ Events. Journals of the Atmospheric Sciences, 2011, 68, 812-822.	1.7	58
69	UV absorption cross sections of nitrous oxide (N ₂ O) and carbon tetrachloride (CCl ₄) between 210 and 350 K and the atmospheric implications. Atmospheric Chemistry and Physics, 2010, 10, 6137-6149.	4.9	32
70	Mechanisms and feedback causing changes in upper stratospheric ozone in the 21st century. Journal of Geophysical Research, 2010, 115, .	3.3	40
71	Assessment of the breakup of the Antarctic polar vortex in two new chemistryâ€elimate models. Journal of Geophysical Research, 2010, 115, .	3.3	25
72	Relationships between the Brewerâ€Dobson circulation and the southern annular mode during austral summer in coupled chemistryâ€climate model simulations. Journal of Geophysical Research, 2010, 115, .	3.3	13

#	Article	IF	CITATIONS
73	Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). Journal of Geophysical Research, 2010, 115, .	3.3	120
74	A meteorological overview of the TC4 mission. Journal of Geophysical Research, 2010, 115, .	3.3	35
75	21st century trends in Antarctic temperature and polar stratospheric cloud (PSC) area in the GEOS chemistry $\hat{\epsilon}$ limate model. Journal of Geophysical Research, 2010, 115, .	3.3	4
76	Narrowing of the upwelling branch of the Brewerâ€Dobson circulation and Hadley cell in chemistryâ€climate model simulations of the 21st century. Geophysical Research Letters, 2010, 37, .	4.0	15
77	Relative Contribution of Greenhouse Gases and Ozone-Depleting Substances to Temperature Trends in the Stratosphere: A Chemistry–Climate Model Study. Journal of Climate, 2010, 23, 28-42.	3.2	52
78	Chemistry and dynamics of the Antarctic Ozone Hole. Geophysical Monograph Series, 2010, , 157-171.	0.1	11
79	Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends. Geophysical Research Letters, 2009, 36, .	4.0	75
80	On the influence of anthropogenic forcings on changes in the stratospheric mean age. Journal of Geophysical Research, 2009, 114 , .	3.3	75
81	Impacts of climate change on stratospheric ozone recovery. Geophysical Research Letters, 2009, 36, .	4.0	97
82	What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?. Atmospheric Chemistry and Physics, 2009, 9, 2113-2128.	4.9	165
83	Stratospheric ozone in the post-CFC era. Atmospheric Chemistry and Physics, 2009, 9, 2207-2213.	4.9	108
84	Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics. Atmospheric Chemistry and Physics, 2009, 9, 8651-8660.	4.9	25
85	State of the Climate in 2008. Bulletin of the American Meteorological Society, 2009, 90, S1-S196.	3.3	74
86	Estimating When the Antarctic Ozone Hole will Recover. , 2009, , 191-200.		4
87	QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations. Journal of Geophysical Research, 2008, 113, .	3.3	71
88	Goddard Earth Observing System chemistryâ€climate model simulations of stratospheric ozoneâ€temperature coupling between 1950 and 2005. Journal of Geophysical Research, 2008, 113, .	3.3	144
89	Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes. Journal of Geophysical Research, 2008, 113, .	3.3	61
90	Evaluation of emissions and transport of CFCs using surface observations and their seasonal cycles and the GEOS CCM simulation with emissionsâ€based forcing. Journal of Geophysical Research, 2008, 113, .	3.3	28

6

#	Article	IF	Citations
91	HIRDLS observations and simulation of a lower stratospheric intrusion of tropical air to high latitudes. Geophysical Research Letters, 2008, 35, .	4.0	20
92	A new formulation of equivalent effective stratospheric chlorine (EESC). Atmospheric Chemistry and Physics, 2007, 7, 4537-4552.	4.9	241
93	Sensitivity of stratospheric inorganic chlorine to differences in transport. Atmospheric Chemistry and Physics, 2007, 7, 4935-4941.	4.9	24
94	Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 2007, 112 , .	3.3	308
95	Variations in stratospheric inorganic chlorine between 1991 and 2006. Geophysical Research Letters, 2007, 34, .	4.0	18
96	Uninhabited Aerial Vehicles: Current and Future Use., 2007,, 106-118.		5
97	When will the Antarctic ozone hole recover?. Geophysical Research Letters, 2006, 33, .	4.0	151
98	An ozone increase in the Antarctic summer stratosphere: A dynamical response to the ozone hole. Geophysical Research Letters, 2006, 33, .	4.0	42
99	Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. Journal of Geophysical Research, 2006, 111 , .	3.3	414
100	The Unusual Southern Hemisphere Stratosphere Winter of 2002. Journals of the Atmospheric Sciences, 2005, 62, 614-628.	1.7	153
101	Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes. Atmospheric Chemistry and Physics, 2005, 5, 1655-1663.	4.9	13
102	The Ozone Hole of 2002 as Measured by TOMS. Journals of the Atmospheric Sciences, 2005, 62, 716-720.	1.7	49
103	A Strategy for Process-Oriented Validation of Coupled Chemistry–Climate Models. Bulletin of the American Meteorological Society, 2005, 86, 1117-1134.	3.3	139
104	Interannual variability of stratospheric trace gases: The role of extratropical wave driving. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 2459-2474.	2.7	10
105	Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	35
106	On the size of the Antarctic ozone hole. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	82
107	Non-coincident inter-instrument comparisons of ozone measurements using quasi-conservative coordinates. Atmospheric Chemistry and Physics, 2004, 4, 2345-2352.	4.9	8
108	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2003, 84, 1055-1082.	3.3	15

#	Article	IF	Citations
109	Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmospheric Chemistry and Physics, 2003, 3, 1-27.	4.9	272
110	An assessment of the ozone loss during the 1999–2000 SOLVE/THESEO 2000 Arctic campaign. Journal of Geophysical Research, 2002, 107, SOL 3-1.	3.3	22
111	Defining the polar vortex edge from an N2O:potential temperature correlation. Journal of Geophysical Research, 2002, 107, SOL 10-1.	3.3	26
112	Photochemical ozone loss in the Arctic as determined by MSX/UVISI stellar occultation observations during the 1999/2000 winter. Journal of Geophysical Research, 2002, 107, SOL 39-1.	3.3	17
113	Ozone loss from quasi-conservative coordinate mapping during the 1999–2000 SOLVE/THESEO 2000 campaigns. Journal of Geophysical Research, 2002, 107, SOL 16-1.	3.3	9
114	Lidar temperature measurements during the SOLVE campaign and the absence of polar stratospheric clouds from regions of very cold air. Journal of Geophysical Research, 2002, 107, SOL 40-1.	3.3	6
115	An overview of the SOLVE/THESEO 2000 campaign. Journal of Geophysical Research, 2002, 107, SOL 1-1.	3.3	94
116	Accuracy of analyzed stratospheric temperatures in the winter Arctic vortex from infrared Montgolfier long-duration balloon flights 2. Results. Journal of Geophysical Research, 2002, 107, SOL 4-1.	3.3	23
117	Mixing events revealed by anomalous tracer relationships in the Arctic vortex during winter 1999/2000. Journal of Geophysical Research, 2002, 107, ACL 22-1.	3.3	15
118	Chance encounter with a stratospheric kerosene rocket plume from Russia over California. Geophysical Research Letters, 2001, 28, 959-962.	4.0	16
119	What controls the temperature of the Arctic stratosphere during the spring?. Journal of Geophysical Research, 2001, 106, 19999-20010.	3.3	315
120	Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS. Journal of Geophysical Research, 2001, 106, 1713-1732.	3.3	7
121	Severe and extensive denitrification in the 1999-2000 Arctic winter stratosphere. Geophysical Research Letters, 2001, 28, 2875-2878.	4.0	71
122	Observational evidence for the role of denitrification in Arctic stratospheric ozone loss. Geophysical Research Letters, 2001, 28, 2879-2882.	4.0	33
123	Quantifying Denitrification and Its Effect on Ozone Recovery. Science, 2000, 288, 1407-1411.	12.6	127
124	Quantifying the wave driving of the stratosphere. Journal of Geophysical Research, 2000, 105, 12485-12497.	3.3	63
125	An Investigation of CIO Photchemistry in the Chemically Perturbed Arctic Vortex. Journal of Atmospheric Chemistry, 1999, 32, 61-81.	3.2	32
126	A comparison of observations and model simulations of NOx/NOyin the lower stratosphere. Geophysical Research Letters, 1999, 26, 1153-1156.	4.0	61

#	Article	IF	Citations
127	Intercomparison of total ozone observations at Fairbanks, Alaska, during POLARIS. Journal of Geophysical Research, 1999, 104, 26767-26778.	3.3	10
128	Persistence of the lower stratospheric polar vortices. Journal of Geophysical Research, 1999, 104, 27191-27201.	3.3	197
129	Preface [to special section on Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS)]. Journal of Geophysical Research, 1999, 104, 26481-26495.	3.3	32
130	Dehydration and denitrification in the Arctic Polar Vortex during the 1995-1996 winter. Geophysical Research Letters, 1998, 25, 501-504.	4.0	33
131	Denitrification observed inside the Arctic vortex in February 1995. Journal of Geophysical Research, 1998, 103, 16221-16233.	3.3	44
132	Comparison between DC-8 and ER-2 species measurements in the tropical middle troposphere: NO, NOy, O3, CO2, CH4, and N2O. Journal of Geophysical Research, 1998, 103, 22087-22096.	3.3	22
133	The Stratosphere in the Southern Hemisphere. , 1998, , 243-282.		22
134	Preserving Earth's Stratosphere. Mechanical Engineering, 1998, 120, 88-91.	0.1	4
135	Anomalously low ozone over the Arctic. Geophysical Research Letters, 1997, 24, 2689-2692.	4.0	177
136	Meteorology of the polar vortex: Spring 1997. Geophysical Research Letters, 1997, 24, 2693-2696.	4.0	160
137	Diabatic cross-isentropic dispersion in the lower stratosphere. Journal of Geophysical Research, 1997, 102, 25817-25829.	3.3	45
138	Stratospheric thermal damping times. Geophysical Research Letters, 1997, 24, 433-436.	4.0	67
139	Activation of chlorine in sulfate aerosol as inferred from aircraft observations. Journal of Geophysical Research, 1997, 102, 3921-3933.	3.3	53
140	Mixing of polar vortex air into middle latitudes as revealed by tracer-tracer scatterplots. Journal of Geophysical Research, 1997, 102, 13119-13134.	3.3	144
141	Dynamical proxies of column ozone with applications to global trend models. Journal of Geophysical Research, 1997, 102, 6117-6129.	3.3	78
142	Measurements of polar vortex air in the midlatitudes. Journal of Geophysical Research, 1996, 101, 12879-12891.	3.3	44
143	Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. Journal of Geophysical Research, 1996, 101, 9441-9470.	3.3	142
144	Ozone change from 1992 to 1993 as observed from SSBUV on the ATLAS-1 and Atlas-2 missions. Geophysical Research Letters, 1996, 23, 2305-2308.	4.0	3

#	Article	IF	CITATIONS
145	An objective determination of the polar vortex using Ertel's potential vorticity. Journal of Geophysical Research, 1996, 101, 9471-9478.	3.3	504
146	Development of the Antarctic ozone hole. Journal of Geophysical Research, 1996, 101, 20909-20924.	3.3	18
147	Meteor 3/total ozone mapping spectrometer observations of the 1993 ozone hole. Journal of Geophysical Research, 1995, 100, 2973.	3.3	25
148	Trajectory modeling of emissions from lower stratospheric aircraft. Journal of Geophysical Research, 1995, 100, 1427-1438.	3.3	12
149	A reinterpretation of the data from the NASA Stratosphere-Troposphere Exchange Project. Geophysical Research Letters, 1995, 22, 2501-2504.	4.0	48
150	Meteor-3/TOMS observations of the 1994 ozone hole. Geophysical Research Letters, 1995, 22, 3227-3229.	4.0	10
151	Trajectory mapping and applications to data from the Upper Atmosphere Research Satellite. Journal of Geophysical Research, 1995, 100, 16491.	3.3	53
152	A multiple-level trajectory analysis of vortex filaments. Journal of Geophysical Research, 1995, 100, 25801.	3.3	99
153	An Algorithm for Forecasting Mountain Wave–Related Turbulence in the Stratosphere. Weather and Forecasting, 1994, 9, 241-253.	1.4	66
154	Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking. Journal of Geophysical Research, 1994, 99, 1071.	3.3	198
155	Intrusions into the lower stratospheric Arctic vortex during the winter of 1991–1992. Journal of Geophysical Research, 1994, 99, 1089.	3.3	140
156	UARS MLS O3soundings compared with lidar measurements using the conservative coordinates reconstruction technique. Geophysical Research Letters, 1994, 21, 1535-1538.	4.0	13
157	Fine-scale, poleward transport of tropical air during AASE 2. Geophysical Research Letters, 1994, 21, 2603-2606.	4.0	16
158	Correlation of ozone loss with the presence of volcanic aerosols. Geophysical Research Letters, 1994, 21, 2801-2804.	4.0	22
159	Computations of diabatic descent in the stratospheric polar vortex. Journal of Geophysical Research, 1994, 99, 16677.	3.3	173
160	Antarctic Total Ozone in 1958. Science, 1994, 264, 543-546.	12.6	7
161	A Comparison of Winds from the STRATAN Data Assimilation System to Balanced Wind Estimates. Journals of the Atmospheric Sciences, 1994, 51, 2309-2315.	1.7	7
162	Record Low Global Ozone in 1992. Science, 1993, 260, 523-526.	12.6	326

#	Article	IF	CITATIONS
163	Chlorine Chemistry on Polar Stratospheric Cloud Particles in the Arctic Winter. Science, 1993, 261, 1130-1134.	12.6	150
164	The Seasonal Evolution of Reactive Chlorine in the Northern Hemisphere Stratosphere. Science, 1993, 261, 1134-1136.	12.6	69
165	Heterogeneous Reaction Probabilities, Solubilities, and the Physical State of Cold Volcanic Aerosols. Science, 1993, 261, 1136-1140.	12.6	40
166	Stratospheric Meteorological Conditions in the Arctic Polar Vortex, 1991 to 1992. Science, 1993, 261, 1143-1146.	12.6	41
167	Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992. Science, 1993, 261, 1146-1149.	12.6	131
168	A simulation of the Cerro Hudson SO ₂ cloud. Journal of Geophysical Research, 1993, 98, 2949-2955.	3.3	70
169	The evolution of CLO and NO along air parcel trajectories. Geophysical Research Letters, 1993, 20, 2511-2514.	4.0	32
170	Interpretation of NO _x /NO _y observations from AASEâ€I using a model of chemistry along trajectories. Geophysical Research Letters, 1993, 20, 2507-2510.	4.0	35
171	MLS CLO observations and Arctic polar vortex temperatures. Geophysical Research Letters, 1993, 20, 2861-2864.	4.0	25
172	NEw observations of the NO \langle sub \rangle y \langle sub \rangle N \langle sub \rangle O correlation in the lower stratosphere. Geophysical Research Letters, 1993, 20, 2531-2534.	4.0	47
173	Postâ€Pinatubo optical depth spectra vs. latitude and vortex structure: Airborne tracking sunphotometer measurements in AASE II. Geophysical Research Letters, 1993, 20, 2571-2574.	4.0	43
174	The structure of the polar vortex. Journal of Geophysical Research, 1992, 97, 7859-7882.	3.3	328
175	Evidence for subsidence in the 1989 Arctic winter stratosphere from airborne infrared composition measurements. Journal of Geophysical Research, 1992, 97, 7963-7970.	3.3	48
176	The 1991 Antarctic Ozone Hole; TOMS observations. Geophysical Research Letters, 1992, 19, 1215-1218.	4.0	16
177	An investigation into the causes of stratospheric ozone loss in the southern Australasian Region. Geophysical Research Letters, 1992, 19, 1463-1466.	4.0	8
178	Longâ€term winter total ozone changes at MacQuarie Island. Geophysical Research Letters, 1992, 19, 1459-1462.	4.0	10
179	Reactive nitrogen, ozone, and nitrate aerosols observed in the Arctic stratosphere in January 1990. Journal of Geophysical Research, 1992, 97, 13025-13038.	3.3	22
180	Spatial and temporal variability of the extent of chemically processed stratospheric air. Geophysical Research Letters, 1991, 18, 29-32.	4.0	15

#	Article	IF	CITATIONS
181	Depletion of Arctic ozone in the winter 1990. Geophysical Research Letters, 1991, 18, 791-794.	4.0	12
182	The 1990 Antarctic Ozone Hole as observed by TOMS. Geophysical Research Letters, 1991, 18, 661-664.	4.0	22
183	ERâ€2 mountain wave encounter over Antarctica: Evidence for blocking. Geophysical Research Letters, 1990, 17, 81-84.	4.0	26
184	Total ozone during the 88â€89 Northern Hemisphere winter. Geophysical Research Letters, 1990, 17, 317-320.	4.0	10
185	Stratospheric temperatures during the 88–89 Northern Hemisphere winter. Geophysical Research Letters, 1990, 17, 329-332.	4.0	11
186	A comparison of Arctic lower stratospheric winter temperatures for 1988–89 with temperatures since 1964. Geophysical Research Letters, 1990, 17, 333-336.	4.0	29
187	Stratospheric temperatures during AASE: Results from Stratan. Geophysical Research Letters, 1990, 17, 337-340.	4.0	16
188	Radiative heating rates during the Airborne Arctic Stratospheric Experiment. Geophysical Research Letters, 1990, 17, 345-348.	4.0	16
189	Smallâ€scale waves encountered during AASE. Geophysical Research Letters, 1990, 17, 349-352.	4.0	21
190	Stratospheric constituent trends from ERâ€2 profile data. Geophysical Research Letters, 1990, 17, 469-472.	4.0	59
191	Airborne measurements of stratospheric constituents over the Arctic in the winter of 1989. Geophysical Research Letters, 1990, 17, 473-476.	4.0	50
192	Reconstruction of O ₃ and N ₂ O fields from ERâ€2, DCâ€8, and balloon observations. Geophysical Research Letters, 1990, 17, 521-524.	4.0	49
193	Three dimensional simulation of hydrogen chloride and hydrogen fluoride during the Airborne Arctic Stratospheric Expedition. Geophysical Research Letters, 1990, 17, 529-532.	4.0	18
194	Effects of atmospheric transport on column abundances of nitrogen and chlorine compounds in the Arctic stratosphere. Geophysical Research Letters, 1990, 17, 533-536.	4.0	9
195	Loss of ozone in the Arctic vortex for the winter of 1989. Geophysical Research Letters, 1990, 17, 561-564.	4.0	65
196	the 1989 Antarctic Ozone Hole as observed by TOMS. Geophysical Research Letters, 1990, 17, 1267-1270.	4.0	37
197	Comparison of ozone profiles from groundâ€based lidar, electrochemical concentration cell balloon sonde, ROCOZâ€A rocket ozonesonde, and Stratospheric Aerosol and Gas Experiment satellite measurements. Journal of Geophysical Research, 1990, 95, 10037-10042.	3.3	30
198	Lidar observations of ozone changes induced by subpolar air mass motion over Table Mountain, California (34.4°N). Journal of Geophysical Research, 1990, 95, 20527-20530.	3.3	7

#	Article	IF	CITATIONS
199	Comparison of the Southern Hemisphere Springs of 1988 and 1987. , 1990, , 71-89.		4
200	Evidence of the mid-latitude impact of Antarctic ozone depletion. Nature, 1989, 340, 290-294.	27.8	95
201	Quasiâ€biennial modulation of the Antarctic ozone depletion. Journal of Geophysical Research, 1989, 94, 11559-11571.	3.3	116
202	Potential vorticity and mixing in the south polar vortex during spring. Journal of Geophysical Research, 1989, 94, 11625-11640.	3.3	46
203	Reconstruction of the constituent distribution and trends in the Antarctic polar vortex from ERâ€2 flight observations. Journal of Geophysical Research, 1989, 94, 16815-16845.	3.3	112
204	The morphology and meteorology of southern hemisphere spring total ozone mini-holes. Geophysical Research Letters, 1988, 15, 923-926.	4.0	86
205	Antarctic springtime ozone depletion computed from temperature observations. Journal of Geophysical Research, 1988, 93, 3833-3849.	3.3	5
206	Effect of computed horizontal diffusion coefficients on twoâ€dimensional N ₂ O model distributions. Journal of Geophysical Research, 1988, 93, 5213-5219.	3.3	17
207	Coherent ozoneâ€dynamical changes during the southern hemisphere spring, 1979–1986. Journal of Geophysical Research, 1988, 93, 12585-12606.	3.3	53
208	Mixing rates calculated from potential vorticity. Journal of Geophysical Research, 1988, 93, 5221-5240.	3.3	62
209	October Antarctic temperature and total ozone trends from 1979â€1985. Geophysical Research Letters, 1986, 13, 1206-1209.	4.0	39
210	The morphology of Antarctic total ozone as seen by TOMS. Geophysical Research Letters, 1986, 13, 1217-1220.	4.0	39
211	The final warming and polar vortex disappearance during the Southern Hemisphere spring. Geophysical Research Letters, 1986, 13, 1228-1231.	4.0	47
212	Horizontal mixing coefficients for twoâ€dimensional chemical models calculated from National Meteorological Center data. Journal of Geophysical Research, 1986, 91, 7919-7924.	3.3	34
213	Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature, 1986, 322, 808-811.	27.8	414
214	Short Meridional Scale Anomalies in the Lower Stratosphere and Upper Troposphere. Journals of the Atmospheric Sciences, 1985, 42, 2081-2092.	1.7	2
215	Observational Characteristics of Atmospheric Anomalies with Short Meridional and Long Zonal Scales. Journals of the Atmospheric Sciences, 1983, 40, 2547-2554.	1.7	0
216	Comparison of Measurements – Calibration and Validation. , 0, , 182-199.		O