
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7725958/publications.pdf Version: 2024-02-01

Нимпінн

#	Article	IF	CITATIONS
1	Microstructure and mechanical property of Mg–10Gd–2Y–1.5Zn–0.5Zr alloy processed by eight-pass equal-channel angular pressing. Rare Metals, 2023, 42, 1371-1377.	7.1	10
2	The effect of enzymes on the in vitro degradation behavior of Mg alloy wires in simulated gastric fluid and intestinal fluid. Bioactive Materials, 2022, 7, 217-226.	15.6	29
3	Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn–Mg binary alloys. Journal of Materials Research and Technology, 2022, 16, 1673-1685.	5.8	42
4	Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature. Acta Materialia, 2022, 225, 117569.	7.9	30
5	Enhanced tensile strength and ductility of an Al-6Si-3Cu alloy processed by room temperature rolling. Journal of Alloys and Compounds, 2022, 899, 163321.	5.5	28
6	Microstructure and mechanical properties of AZ31 alloy prepared by cyclic expansion extrusion with asymmetrical extrusion cavity. Transactions of Nonferrous Metals Society of China, 2022, 32, 122-133.	4.2	7
7	Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. Journal of Materials Research and Technology, 2022, 17, 244-269.	5.8	46
8	Dual self-healing inorganic-organic hybrid coating on biomedical Mg. Corrosion Science, 2022, 200, 110230.	6.6	31
9	Achieving high-strain-rate and low-temperature superplasticity in an ECAP-processed Mg-Y-Er-Zn alloy via Ag addition. Journal of Magnesium and Alloys, 2022, , .	11.9	2
10	Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance. Journal of Alloys and Compounds, 2022, 911, 165046.	5.5	19
11	Achieving ultra-high strength using densely ultra-fine LPSO phase. Journal of Materials Science and Technology, 2022, 129, 135-138.	10.7	10
12	Evolution of grain size and texture of Zn-0.5Cu ECAP alloy during annealing at 200Â℃ and its impact on mechanical properties. Journal of Alloys and Compounds, 2022, 919, 165871.	5.5	5
13	A high strength and ductility Zn–Cu–Mg alloy achieved by bandlike distribution of ultra-fine CuZn5 and Mg2Zn11 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143584.	5.6	6
14	Different Tribological Behaviors of SiCp/AZ91 Composites Induced by Tailoring the Distribution of SiC Particles. Metals and Materials International, 2021, 27, 556-569.	3.4	4
15	Enhancing Mechanical Properties of Mg–6Zn Alloy by Deformation-Induced Nanoprecipitation. Acta Metallurgica Sinica (English Letters), 2021, 34, 217-226.	2.9	5
16	Insights into self-healing behavior and mechanism of dicalcium phosphate dihydrate coating on biomedical Mg. Bioactive Materials, 2021, 6, 158-168.	15.6	46
17	Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction. Journal of Materials Chemistry A, 2021, 9, 15432-15440.	10.3	103
18	Microstructure evolution during superplastic deformation process and its impact on superplastic behavior of a Mg-Gd-Y-Zn-Zr alloy. Materials Characterization, 2021, 172, 110879.	4.4	21

#	Article	IF	CITATIONS
19	Achieving single-pass high-reduction rolling and enhanced mechanical properties of AZ91 alloy by RD-ECAP pre-processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140717.	5.6	16
20	Achieving Exceptional High Ductility in Binary Mg–6Zn Alloy Wire by Grain Boundary Strengthening and Twinningâ€Induced Plasticity. Advanced Engineering Materials, 2021, 23, 2001476.	3.5	2
21	Discharge properties of ECAP processed AZ31ï¼€a alloys as anodes for seawater-activated battery. Journal of Materials Research and Technology, 2021, 11, 1031-1044.	5.8	15
22	A novel method for improving the strength and ductility of Mg–Y–Er–Zn alloy using rotary-die equal-channel angular pressing. Journal of Materials Research and Technology, 2021, 13, 1752-1758.	5.8	14
23	Preparation and characterization of antibacterial oxide film with deposited silver on Al alloy. Materials Research Express, 2021, 8, 106515.	1.6	2
24	Effect of ECAP temperature on formation of triple heterogeneous microstructure and mechanical properties of Zn–1Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141990.	5.6	27
25	Improvement of ductility and work hardening ability in a high strength Zn-Mg-Y alloy via micron-sized and submicron-sized YZn12 particles. Journal of Alloys and Compounds, 2021, 877, 160268.	5.5	16
26	Tailoring the corrosion behavior and mechanism of AZ31 magnesium alloys by different Ca contents for marine application. Corrosion Science, 2021, 192, 109842.	6.6	30
27	Recent Progress on Corrosion Behavior and Mechanism of Mg–RE Based Alloys with Long Period Stacking Ordered Structure. Metals and Materials International, 2020, 26, 551-563.	3.4	15
28	Achieving excellent ductility in high-strength Mg-10.6Gd-2â€ [−] Ag alloy via equal channel angular pressing. Journal of Alloys and Compounds, 2020, 817, 152688.	5.5	52
29	A study of a biodegradable braided Mg stent for biliary reconstruction. Journal of Materials Science, 2020, 55, 17170-17182.	3.7	24
30	Multi-interactions of dislocations and refined microstructure in a high strength and toughness Zn-Mg-Mn alloy. Journal of Materials Research and Technology, 2020, 9, 14116-14121.	5.8	23
31	3D-cubic interconnected porous Mg-based scaffolds for bone repair. Journal of Magnesium and Alloys, 2020, 9, 1329-1329.	11.9	31
32	Fragmentation of 18R LPSO phases through multi-pass equal channel angular pressing and its impact on rollability of Mg97Y2Zn1 (at%) alloy. Journal of Materials Research and Technology, 2020, 9, 14865-14877.	5.8	18
33	Developing an industrial-scale ECAP Mg-Al-Zn alloy with multi-heterostructure for synchronously high strength and good ductility. Materials Characterization, 2020, 164, 110341.	4.4	34
34	Shrinking tension-compression asymmetry of Au nanowires by designed nanotwin boundaries. Materials Chemistry and Physics, 2020, 252, 123267.	4.0	1
35	Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles. Journal of Materials Science and Technology, 2020, 59, 61-71.	10.7	50
36	A High-Strength and Biodegradable Zn–Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP. Acta Metallurgica Sinica (English Letters), 2020, 33, 1191-1200.	2.9	35

#	Article	IF	CITATIONS
37	Microstructure and anisotropic mechanical behavior of the high-strength and ductility AZ91 Mg alloy processed by hot extrusion and multi-pass RD-ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139191.	5.6	80
38	Microstructure characterization and corrosion behavior of Mg–Y–Zn alloys with different long period stacking ordered structures. Journal of Magnesium and Alloys, 2020, 8, 1208-1220.	11.9	40
39	Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn-0.6ÂMg alloy during multi-pass equal channel angular pressing. Journal of Alloys and Compounds, 2020, 844, 155923.	5.5	43
40	Effect of Necklace-Type Distribution of SiC Particles on Dry Sliding Wear Behavior of As-Cast AZ91D/SiCp Composites. Crystals, 2020, 10, 296.	2.2	8
41	Controlling Corrosion Resistance of a Biodegradable Mg–Y–Zn Alloy with LPSO Phases via Multi-pass ECAP Process. Acta Metallurgica Sinica (English Letters), 2020, 33, 1180-1190.	2.9	18
42	Microstructure and texture evolution of the β-Mg17A12 phase in a Mg alloy with an ultra-high Al content. Journal of Materials Science and Technology, 2020, 52, 89-99.	10.7	11
43	Improving Strength and Ductility of a Mg-3.7Al-1.8Ca-0.4Mn Alloy with Refined and Dispersed Al2Ca Particles by Industrial-Scale ECAP Processing. Metals, 2019, 9, 767.	2.3	13
44	Preparation of a single-phase Mg–6Zn alloy via ECAP-stimulated solution treatment. Journal of Magnesium and Alloys, 2019, 7, 305-314.	11.9	22
45	Evolution of Mg–Zn second phases during ECAP at different processing temperatures and its impact on mechanical properties of Zn-1.6Mg (wt.%) alloys. Journal of Alloys and Compounds, 2019, 811, 151987.	5.5	50
46	Exceptional mechanical properties of an Mg97Y2Zn1 alloy wire strengthened by dispersive LPSO particle clusters. Materials Letters, 2019, 242, 87-90.	2.6	24
47	Recent Advances in LPSO-Containing Wrought Magnesium Alloys: Relationships Between Processing, Microstructure, and Mechanical Properties. Jom, 2019, 71, 3314-3327.	1.9	64
48	Managing strength and ductility in AZ91 magnesium alloy through ECAP combined with prior and post aging treatment. Materials Characterization, 2019, 152, 213-222.	4.4	57
49	Tension-compression asymmetry of the AZ91 magnesium alloy with multi-heterogenous microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 703-707.	5.6	39
50	Effect of ECAP process on as-cast and as-homogenized Mg-Al-Ca-Mn alloys with different Mg2Ca morphologies. Journal of Alloys and Compounds, 2019, 793, 259-270.	5.5	54
51	High Mechanical Properties of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing and Rolling. Metals, 2019, 9, 386.	2.3	9
52	Microstructure evolution and mechanical improvement by rapid solidification of polycrystalline Co ₃₅ Ni ₃₂ Al ₃₂ Dy alloy. Materials Research Express, 2019, 6, 126545.	1.6	5
53	Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg-Al-Ca-Mn alloy. Journal of Magnesium and Alloys, 2019, 7, 617-627.	11.9	94
54	Preparation of a high strength and high ductility Mg-6Zn alloy wire by combination of ECAP and hot drawing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 513-518.	5.6	39

47

#	Article	IF	CITATIONS
55	Microstructure and Mechanical Properties of Mg–RE–TM Cast Alloys Containing Long Period Stacking Ordered Phases: A Review. Acta Metallurgica Sinica (English Letters), 2019, 32, 269-285.	2.9	65
56	Enhanced quasi-isotropic ductility in bi-textured AZ91 Mg alloy processed by up-scaled RD-ECAP processing. Journal of Alloys and Compounds, 2019, 780, 443-451.	5.5	49
57	Microstructure and corrosion resistance of yellow MAO coatings. Surface Engineering, 2019, 35, 334-342.	2.2	13
58	Deformation mechanisms at multiple pop-ins under spherical nanoindentation of (1â€ [–] 1â€ [–] 1) Si. Computational Materials Science, 2018, 143, 480-485.	3.0	12
59	Martensite Transformation and Mechanical Properties of Polycrystalline Co-Ni-Al Alloys with Gd Doping. Metals, 2018, 8, 848.	2.3	8
60	Comparative Study of Two Aging Treatments on Microstructure and Mechanical Properties of an Ultra-Fine Grained Mg-10Y-6Gd-1.5Zn-0.5Zr Alloy. Metals, 2018, 8, 658.	2.3	5
61	Multimodal Microstructure and Mechanical Properties of AZ91 Mg Alloy Prepared by Equal Channel Angular Pressing plus Aging. Metals, 2018, 8, 763.	2.3	33
62	Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires. Nanomaterials, 2018, 8, 848.	4.1	8
63	Mechanical and Biological Properties of a Biodegradable Mgâ€Znâ€Ca Porous Alloy. Orthopaedic Surgery, 2018, 10, 160-168.	1.8	19
64	High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 485-490.	5.6	77
65	Precipitation behavior of 14H LPSO structure in single 18R phase Mg–Y–Zn alloy during annealing at 773 K. Transactions of Nonferrous Metals Society of China, 2017, 27, 63-72.	4.2	18
66	A two-step dynamic recrystallization induced by LPSO phases and its impact on mechanical property of severe plastic deformation processed Mg97Y2Zn1 alloy. Journal of Alloys and Compounds, 2017, 704, 509-517.	5.5	146
67	Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy. Journal of Electronic Materials, 2017, 46, 2540-2547.	2.2	7
68	Microstructure, Martensite Transition and Mechanical Properties Investigations of Polycrystalline Co-Ni-Al Alloys with Er Doping. Journal of Materials Engineering and Performance, 2017, 26, 1062-1068.	2.5	11
69	Microstructure and mechanical property of a high-strength Mg–10Gd–6Y–1.5Zn–0.5Zr alloy prepared by multi-pass equal channel angular pressing. Journal of Magnesium and Alloys, 2017, 5, 231-237.	11.9	49
70	Hot Workability of the as-Cast 21Cr Economical Duplex Stainless Steel Through Processing Map and Microstructural Studies Using Different Instability Criteria. Acta Metallurgica Sinica (English) Tj ETQq0 0 0 rgBT /C	Dv er øock 1	0 T\$ 50 137
71	The precipitation behavior of MgZn2 and Mg4Zn7 phase in Mg-6Zn (wt.%) alloy during equal-channel angular pressing. Journal of Magnesium and Alloys, 2017, 5, 336-339.	11.9	37
	Dynamic precipitation behavior and mechanical property of an Mg94Y47n2 alloy prepared by multi-pass		

Dynamic precipitation behavior and mechanical property of an Mg94Y4Zn2 alloy prepared by multi-pass
successive equal channel angular pressing. Materials Science & amp; Engineering A: Structural
Materials: Properties, Microstructure and Processing, 2017, 682, 255-259.

#	Article	IF	CITATIONS
73	Stress Corrosion Cracking Behavior of Fine-Grained AZ61 Magnesium Alloys Processed by Equal-Channel Angular Pressing. Metals, 2017, 7, 343.	2.3	11
74	Size Effect and Deformation Mechanism in Twinned Copper Nanowires. Metals, 2017, 7, 438.	2.3	6
75	Structure and Martensitic Transformation in Rapidly Solidified CoNiAlFe Alloy. Metals, 2017, 7, 473.	2.3	3
76	Fabrication of an Ultra-Fine Grained Pure Titanium with High Strength and Good Ductility via ECAP plus Cold Rolling. Metals, 2017, 7, 563.	2.3	17
77	Preparation, Microstructure Evolutions, and Mechanical Property of an Ultra-Fine Grained Mg-10Gd-4Y-1.5Zn-0.5Zr Alloy. Metals, 2017, 7, 398.	2.3	23
78	Biodegradable Behaviors of Ultrafine-Grained ZE41A Magnesium Alloy in DMEM Solution. Metals, 2016, 6, 3.	2.3	16
79	Effect of Multi-Pass Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of a Heterogeneous Mg88Y8Zn4 Alloy. Journal of Materials Science and Technology, 2016, 32, 1274-1281.	10.7	40
80	Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 125-132.	5.6	59
81	Formation Behavior of 14H Long Period Stacking Ordered Structure in Mg–Y–Zn Cast Alloys with Different α-Mg Fractions. Journal of Materials Science and Technology, 2016, 32, 1267-1273.	10.7	33
82	Polyethylene glycol-assisted preparation of beta-tricalcium phosphate by direct precipitation method. Powder Technology, 2016, 301, 255-260.	4.2	6
83	Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg–Y–Zn alloys during annealing at 773K. Materials and Design, 2016, 93, 9-18.	7.0	97
84	Microstructures and Mechanical Properties of Mg-2Y-xZn (x=1, 2, 3 at%) Alloys. Rare Metal Materials and Engineering, 2014, 43, 570-574.	0.8	14
85	Effects of Heat Treatments on Microstructures and Precipitation Behaviour ofÂMg94Y4Zn2 Extruded Alloy. Journal of Materials Science and Technology, 2014, 30, 128-133.	10.7	24
86	The Microstructure and Mechanical Properties of Magnetic Shape Memory Alloys NiCo40+xAl30-x [X=0〕 3〕6〕10]. , 2014, , 101-113.		0
87	Microstructure and Mechanical Properties of a Mg94Y4Ni2 Alloy with Long Period Stacking Ordered Structure. Journal of Materials Engineering and Performance, 2013, 22, 3500-3506.	2.5	20
88	Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 387-395.	5.6	55
89	Microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy with long-period stacking ordered structure. Transactions of Nonferrous Metals Society of China, 2013, 23, 3598-3603.	4.2	4
90	Effect of heat treatments on the microstructure and mechanical properties of an extruded Mg95.5Y3Zn1.5 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 261-267.	5.6	51

#	Article	IF	CITATIONS
91	MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(2, 3, 4)Y-IZn ALLOYS WITH LONG PERIOD STACKING ORDERED STRUCTURE. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 236.	0.3	1
92	Influence of Y/Zn Mole Ratio on the Phase Composition and Mechanical Properties of Mg-Y-Zn Alloys. , 2013, , 1291-1298.		1
93	EFFECTS OF HIGH TEMPERATURE ANNEALING ON MORPHOLOGY OF LONG PERIOD STACKING ORDERED STRUCTURES IN AS-CASE AND AS-EXTRUDED Mg97Y2Zn1ALLOY. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 1255.	0.3	Ο
94	Study of Flux on Wetting Behavior of Sn-Zn Lead-Free Solders. Advanced Materials Research, 2011, 189-193, 3230-3237.	0.3	2
95	Optimization of the Experimental Parameters Affecting the Corrosion Behavior for Mg–Y–Zn–Mn Alloy via Response Surface Methodology. Metals and Materials International, 0, , 1.	3.4	6