
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7725688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gal3 Plays a Deleterious Role in a Mouse Model of Endotoxemia. International Journal of Molecular Sciences, 2022, 23, 1170.	1.8	3
2	Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors. Journal of Clinical Investigation, 2022, 132, .	3.9	28
3	Inflammatory Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S165-S182.	1.5	9
4	Selective deletion of Caspase-3 gene in the dopaminergic system exhibits autistic-like behaviour. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110030.	2.5	9
5	Galectin-3 Deletion Reduces LPS and Acute Colitis-Induced Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon. Frontiers in Pharmacology, 2021, 12, 706439.	1.6	6
6	Hydroxytyrosol Decreases LPS- and α-Synuclein-Induced Microglial Activation In Vitro. Antioxidants, 2020, 9, 36.	2.2	28
7	Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 2020, 9, 1717.	1.8	174
8	Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Frontiers in Immunology, 2020, 11, 2069.	2.2	66
9	The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement. International Journal of Molecular Sciences, 2020, 21, 6429.	1.8	17
10	Microglial subtypes: diversity within the microglial community. EMBO Journal, 2019, 38, e101997.	3.5	345
11	Reformulating Pro-Oxidant Microglia in Neurodegeneration. Journal of Clinical Medicine, 2019, 8, 1719.	1.0	47
12	TET2 Regulates the Neuroinflammatory Response in Microglia. Cell Reports, 2019, 29, 697-713.e8.	2.9	74
13	Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta Neuropathologica, 2019, 138, 251-273.	3.9	187
14	Magnetofection as a new tool to study microglia biology. Neural Regeneration Research, 2019, 14, 767.	1.6	1
15	HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System. Molecular Neurobiology, 2018, 55, 8856-8868.	1.9	14
16	Peripheral Inflammation Enhances Microglia Response and Nigral Dopaminergic Cell Death in an in vivo MPTP Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 398.	1.8	67
17	Divergent Effects of Metformin on an Inflammatory Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 440.	1.8	43
18	Caspases orchestrate microglia instrumental functions. Progress in Neurobiology, 2018, 171, 50-71.	2.8	27

#	Article	IF	CITATIONS
19	RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation. Cell Death and Disease, 2018, 9, 973.	2.7	33
20	Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Scientific Reports, 2017, 7, 41689.	1.6	120
21	Caspase-8 inhibition represses initial human monocyte activation in septic shock model. Oncotarget, 2016, 7, 37456-37470.	0.8	16
22	Chronic stress alters the expression levels of longevity-related genes in the rat hippocampus. Neurochemistry International, 2016, 97, 181-192.	1.9	26
23	Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype. Nature Immunology, 2016, 17, 1282-1290.	7.0	76
24	Spatio-temporal activation of caspase-8 in myeloid cells upon ischemic stroke. Acta Neuropathologica Communications, 2016, 4, 92.	2.4	17
25	Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicology and Applied Pharmacology, 2016, 298, 19-30.	1.3	72
26	PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. Aging, 2015, 7, 629-643.	1.4	87
27	Relevance of chronic stress and the two faces of microglia in Parkinson's disease. Frontiers in Cellular Neuroscience, 2015, 9, 312.	1.8	36
28	Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell Reports, 2015, 10, 1626-1638.	2.9	268
29	Synergistic Deleterious Effect of Chronic Stress and Sodium Azide in the Mouse Hippocampus. Chemical Research in Toxicology, 2015, 28, 651-661.	1.7	4
30	Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism. Journal of Neuroinflammation, 2015, 12, 5.	3.1	38
31	Evaluation of a method for murine monocyte isolation by bone marrow depletion. Analytical Biochemistry, 2015, 480, 42-48.	1.1	5
32	Deletion of caspase-8 in mouse myeloid cells blocks microglia pro-inflammatory activation and confers protection in MPTP neurodegeneration model. Aging, 2015, 7, 673-689.	1.4	28
33	Collateral Damage: Contribution of Peripheral Inflammation to Neurodegenerative Diseases. Current Topics in Medicinal Chemistry, 2015, 15, 2193-2210.	1.0	37
34	Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia. Cell Death and Disease, 2014, 5, e1565-e1565.	2.7	65
35	Chronic stress as a risk factor for Alzheimer's disease. Reviews in the Neurosciences, 2014, 25, 785-804.	1.4	132
36	The role of Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathologica Communications, 2014, 2, 156.	2.4	63

#	Article	IF	CITATIONS
37	Role of dopamine in the recruitment of immune cells to the nigro-striatal dopaminergic structures. NeuroToxicology, 2014, 41, 89-101.	1.4	25
38	Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. Journal of Neuroinflammation, 2014, 11, 34.	3.1	157
39	Caspases Playing in the Field of Neuroinflammation: Old and New Players. Developmental Neuroscience, 2013, 35, 88-101.	1.0	35
40	A Brief Overview of Multitalented Microglia. Methods in Molecular Biology, 2013, 1041, 3-8.	0.4	24
41	Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. NeuroToxicology, 2012, 33, 347-360.	1.4	87
42	The executioners sing a new song: killer caspases activate microglia. Cell Death and Differentiation, 2011, 18, 1679-1691.	5.0	47
43	Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiology of Aging, 2011, 32, 85-102.	1.5	128
44	Peripheral Inflammation Increases the Damage in Animal Models of Nigrostriatal Dopaminergic Neurodegeneration: Possible Implication in Parkinson's Disease Incidence. Parkinson's Disease, 2011, 2011, 1-10.	0.6	35
45	Caspase signalling controls microglia activation and neurotoxicity. Nature, 2011, 472, 319-324.	13.7	491
46	Apoptosis-inducing factor mediates dopaminergic cell death in response to LPS-induced inflammatory stimulus. Neurobiology of Disease, 2011, 41, 177-188.	2.1	64
47	Nanostructures for Drug Delivery to the Brain. Current Medicinal Chemistry, 2011, 18, 5303-5321.	1.2	43
48	Ulcerative colitis exacerbates lipopolysaccharideâ€induced damage to the nigral dopaminergic system: potential risk factor in Parkinson`s disease. Journal of Neurochemistry, 2010, 114, 1687-1700.	2.1	169
49	Use of haptoglobin and transthyretin as potential biomarkers for the preclinical diagnosis of Parkinson's disease. Neurochemistry International, 2010, 57, 227-234.	1.9	37
50	Striatal ablation of GABAergic neurons prevents the in vivo neuroprotective effect of DCG-IV against the MPP+-induced neurotoxicity on dopaminergic nerve terminals. Neurochemistry International, 2010, 57, 979-984.	1.9	1
51	Regionalâ€specific regulation of BDNF and <i>trk</i> B correlates with nigral dopaminergic cell sprouting following unilateral nigrostriatal axotomy. Journal of Neuroscience Research, 2008, 86, 2016-2027.	1.3	3
52	The intrastriatal injection of thrombin in rat induced a retrograde apoptotic degeneration of nigral dopaminergic neurons through synaptic elimination. Journal of Neurochemistry, 2008, 105, 750-762.	2.1	12
53	Intracerebral VEGF injection highly upregulates AQP4 mRNA and protein in the perivascular space and glia limitans externa. Neurochemistry International, 2008, 52, 897-903.	1.9	41
54	Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration. Journal of Neuroscience Research, 2007, 85, 3607-3618.	1.3	25

#	Article	IF	CITATIONS
55	Blood?brain barrier disruption induces in�vivo degeneration of nigral dopaminergic neurons. Journal of Neurochemistry, 2007, 101, 1567-1582.	2.1	125
56	Mitochondrial toxins and neurodegenerative diseases. Frontiers in Bioscience - Landmark, 2007, 12, 986.	3.0	53
57	Stress Increases Vulnerability to Inflammation in the Rat Prefrontal Cortex. Journal of Neuroscience, 2006, 26, 5709-5719.	1.7	187
58	Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes: Protective effect by estradiol treatment in ovariectomized animals. Journal of Neuroscience Research, 2005, 80, 235-246.	1.3	101
59	Kainate-induced zinc translocation from presynaptic terminals causes neuronal and astroglial cell death and mRNA loss of BDNF receptors in the hippocampal formation and amygdala. Journal of Neuroscience Research, 2005, 82, 184-195.	1.3	16
60	Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. Journal of Neural Transmission, 2005, 112, 111-119.	1.4	95
61	Divergent regulatory mechanisms governing BDNF mRNA expression in cerebral cortex and substantia nigra in response to striatal target ablation. Experimental Neurology, 2005, 192, 142-155.	2.0	9
62	In vivo expression of aquaporin-4 by reactive microglia. Journal of Neurochemistry, 2004, 91, 891-899.	2.1	62
63	Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiology of Disease, 2004, 16, 190-201.	2.1	187
64	Importance of Aquaporins in the Physiopathology of Brain Edema. Current Pharmaceutical Design, 2004, 10, 2153-2161.	0.9	35
65	Evidence for dopamine-derived hydroxyl radical formation in the nigrostriatal system in response to axotomy. Free Radical Biology and Medicine, 2003, 34, 111-123.	1.3	8
66	Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia. Journal of Neurochemistry, 2003, 84, 1201-1214.	2.1	75
67	Expression of BDNF mRNA in substantia nigra is dependent on target integrity and independent of neuronal activation. Journal of Neurochemistry, 2003, 87, 709-721.	2.1	14
68	Semichronic Inhibition of Glutathione Reductase Promotes Oxidative Damage to Proteins and Induces both Transcription and Translation of Tyrosine Hydroxylase in the Nigrostriatal System. Free Radical Research, 2003, 37, 1003-1012.	1.5	6
69	Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Molecular Brain Research, 2002, 103, 116-129.	2.5	42
70	DCG-IV but not other group-II metabotropic receptor agonists induces microglial BDNF mRNA expression in the rat striatum. Correlation with neuronal injury. Neuroscience, 2002, 113, 857-869.	1,1	42
71	Melatonin induces tyrosine hydroxylase mRNA expression in the ventral mesencephalon but not in the hypothalamus. Journal of Pineal Research, 2002, 32, 6-14.	3.4	29
72	Histamine Infusion Induces a Selective Dopaminergic Neuronal Death Along with an Inflammatory Reaction in Rat Substantia Nigra. Journal of Neurochemistry, 2002, 75, 540-552.	2.1	68

#	Article	IF	CITATIONS
73	Potential Role of Endogenous Brain-Derived Neurotrophic Factor in Long-Term Neuronal Reorganization of the Superior Colliculus after Bilateral Visual Deprivation. Neurobiology of Disease, 2001, 8, 866-880.	2.1	34
74	Long-lasting induction of brain-derived neurotrophic factor is restricted to resistant cell populations in an animal model of status epilepticus. Neuroscience, 2001, 103, 955-969.	1.1	8
75	Aquaporins in the central nervous system. Progress in Neurobiology, 2001, 63, 321-336.	2.8	182
76	Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. Journal of Neurochemistry, 2001, 76, 351-360.	2.1	81
77	Upregulation of BDNF mRNA and trkB mRNA in the Nigrostriatal System and in the Lesion Site Following Unilateral Transection of the Medial Forebrain Bundle. Experimental Neurology, 2000, 161, 38-48.	2.0	22
78	The Single Intranigral Injection of LPS as a New Model for Studying the Selective Effects of Inflammatory Reactions on Dopaminergic System. Neurobiology of Disease, 2000, 7, 429-447.	2.1	373
79	Decreased messenger RNA expression of key markers of the nigrostriatal dopaminergic system following vitamin E deficiency in the rat. Neuroscience, 2000, 101, 1029-1036.	1.1	6
80	Low selenium diet induces tyrosine hydroxylase enzyme in nigrostriatal system of the rat. Molecular Brain Research, 2000, 84, 7-16.	2.5	16
81	Localization of Aquaporin-3 mRNA and protein along the gastrointestinal tract of Wistar rats. Pflugers Archiv European Journal of Physiology, 1999, 438, 94-100.	1.3	56
82	Serotonin hyperinnervation in the adult rat ventral mesencephalon following unilateral transection of the medial forebrain bundle. Correlation with reactive microglial and astroglial populations. Neuroscience, 1999, 91, 567-577.	1.1	20
83	Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience, 1999, 94, 239-250.	1.1	121
84	Delayed apoptotic pyramidal cell death in CA4 and CA1 hippocampal subfields after a single intraseptal injection of kainate. Neuroscience, 1999, 94, 1071-1081.	1.1	26
85	Differential Upregulation of Aquaporin-4 mRNA Expression in Reactive Astrocytes after Brain Injury: Potential Role in Brain Edema. Neurobiology of Disease, 1999, 6, 245-258.	2.1	227
86	Regionally specific induction of BDNF and truncated trkB.T1 receptors in the hippocampal formation after intraseptal injection of kainic acid. Brain Research, 1998, 790, 270-277.	1.1	25
87	Developmental expression of 5-HT7 receptor mRNA in rat brain visual structures after neonatal enucleation. NeuroReport, 1997, 8, 1531-1535.	0.6	9
88	Deprenyl induces the tyrosine hydroxylase enzyme in the rat dopaminergic nigrostriatal system. Molecular Brain Research, 1997, 46, 31-38.	2.5	25
89	Expression of 5-HT7 receptor mRNA in rat brain during postnatal development. Neuroscience Letters, 1997, 227, 53-56.	1.0	47
90	Less induced 1-methyl-4-phenylpyridinium ion neurotoxicity on striatal slices from guinea-pigs fed with a vitamin C-deficient diet. Neuroscience, 1997, 77, 167-174.	1.1	9

#	Article	IF	CITATIONS
91	Protective effects of neurotrophin-4/5 and transforming growth factor-α on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid. Neuroscience, 1997, 78, 73-86.	1.1	48
92	Increased Activity and Expression of Tyrosine Hydroxylase in the Rat Substantia Nigra after Chronic Treatment with Nomifensine. Molecular Pharmacology, 1997, 52, 641-647.	1.0	4
93	Chronic Inhibition of the High-Affinity Dopamine Uptake System Increases Oxidative Damage to Proteins in the Aged Rat Substantia Nigra. Free Radical Biology and Medicine, 1997, 23, 1-7.	1.3	11
94	Deprenyl induces GFAP immunoreactivity in the intact and injured dopaminergic nigrostriatal system but fails to counteract axotomy-induced degenerative changes. Glia, 1997, 21, 204-216.	2.5	13
95	Time Course Changes in the Dopaminergic Nigrostriatal System Following Transection of the Medial Forebrain Bundle: Detection of Oxidatively Modified Proteins in Substantia Nigra. Journal of Neurochemistry, 1997, 68, 2458-2468.	2.1	41
96	MK-801 PARTIALLY PROTECTS AGAINST THE ACUTE MPP+ DEPLETING EFFECT ON DOPAMINE LEVELS IN RAT STRIATAL SLICES. Neurochemistry International, 1996, 29, 411-416.	1.9	8
97	IMT-4/5 protects against adrenalectomy-induced apoptosis of rat hippocampal granule cells. NeuroReport, 1996, 7, 682.	0.6	16
98	Oxidative inactivation of tyrosine hydroxylase in substantia nigra of aged rat. Free Radical Biology and Medicine, 1996, 20, 53-61.	1.3	66
99	Intrastriatal quinolinic acid injections protect against 6-hydroxydopamine-induced lesions of the dopaminergic nigrostriatal system. Brain Research, 1995, 672, 153-158.	1.1	19
100	Retrograde transport of nerve growth factor from hippocampus and amygdala to trk A messenger RNA expressing neurons in paraventricular and reuniens nuclei of the thalamus. Neuroscience, 1995, 64, 855-860.	1.1	9
101	Intrastriatal infusion of nerve growth factor after quinolinic acid prevents reduction of cellular expression of choline acetyltransferase messenger RNA and trkA messenger RNA, but not glutamate decarboxylase messenger RNA. Neuroscience, 1994, 61, 257-268.	1.1	52
102	Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: Effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration. Neuroscience, 1994, 59, 797-815.	1.1	90
103	6-Hydroxydopamine lesions reduce BDNF mRNA levels in adult rat brain substantia nigra. NeuroReport, 1994, 5, 429-432.	0.6	34
104	Effect of ageing on monoamine turnover in the prefrontal cortex of rats. Mechanisms of Ageing and Development, 1993, 72, 105-118.	2.2	13
105	Age-related changes on monoamine turnover in hippocampus of rats. Brain Research, 1993, 631, 89-96.	1.1	52
106	TrkA NGF receptor expression by non-cholinergic thalamic neurons. NeuroReport, 1993, 4, 959-962.	0.6	17
107	Changes in neurotransmitter levels associated with the deficiency of some essential amino acids in the diet. British Journal of Nutrition, 1992, 68, 409-420.	1.2	23
108	In vivo protection of striatum from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Brain Research, 1992, 586, 203-207.	1.1	41

#	Article	IF	CITATIONS
109	Changes in the Turnover of Monoamines in Prefrontal Cortex of Rats Fed on Vitamin E-Deficient Diet. Journal of Neurochemistry, 1992, 58, 1889-1895.	2.1	6
110	Age effects on monoamine turnover of the rat substantia nigra. Brain Research, 1991, 557, 109-114.	1.1	20
111	Turnover of Dopamine and Serotonin and Their Metabolites in the Striatum of Aged Rats. Journal of Neurochemistry, 1991, 56, 1940-1948.	2.1	36
112	Effects of neonatal bilateral eye enucleation on postnatal development of the monoamines in posterior thalamus of the rat. Journal of Neural Transmission, 1991, 85, 231-242.	1.4	3
113	Determination of levels of biogenic amines and their metabolites and both forms of monoamine oxidase in prefrontal cortex of aged rats. Mechanisms of Ageing and Development, 1990, 56, 253-263.	2.2	9
114	Changes in monoamines and their metabolite levels in substantia nigra of aged rats. Mechanisms of Ageing and Development, 1989, 49, 227-233.	2.2	14
115	Determination of monoamines and both forms of monoamine oxidase in the rat's substantia nigra during postnatal development. Life Sciences, 1989, 45, 1277-1283.	2.0	17