
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7725457/publications.pdf Version: 2024-02-01

WIM VAN DEN ENDE

#	Article	IF	CITATIONS
1	A novel chicory fructanase can degrade common microbial fructan product profiles and displays positive cooperativity. Journal of Experimental Botany, 2022, 73, 1602-1622.	4.8	11
2	Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against BotrytisÂcinerea. Biomolecules, 2022, 12, 370.	4.0	6
3	Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against <i>Botrytis cinerea</i> in chicory. Journal of Experimental Botany, 2022, 73, 4214-4235.	4.8	12
4	Production of a high molecular weight levan by Bacillus paralicheniformis, an industrially and agriculturally important isolate from the buffalo grass rhizosphere. Antonie Van Leeuwenhoek, 2022, 115, 1101-1112.	1.7	3
5	Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules, 2021, 11, 223.	4.0	21
6	Phosphorolytic degradation of leaf starch via plastidic α-glucan phosphorylase leads to optimized plant growth and water use efficiency over the diel phases of Crassulacean acid metabolism. Journal of Experimental Botany, 2021, 72, 4419-4434.	4.8	8
7	Functional and Molecular Characterization of the Halomicrobium sp. IBSBa Inulosucrase. Microorganisms, 2021, 9, 749.	3.6	9
8	At the Crossroads of Survival and Death: The Reactive Oxygen Species–Ethylene–Sugar Triad and the Unfolded Protein Response. Trends in Plant Science, 2021, 26, 338-351.	8.8	34
9	Sweet Modifications Modulate Plant Development. Biomolecules, 2021, 11, 756.	4.0	14
10	The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecological Monographs, 2020, 90, e01393.	5.4	46
11	Selective Hydrolysis of Terminal Glycosidic Bond in αâ€1â€Acid Glycoprotein Promoted by Keggin and Wells–Dawson Type Heteropolyacids. Chemistry - A European Journal, 2020, 26, 16463-16471.	3.3	4
12	Priming with Î ³ -Aminobutyric Acid against Botrytis cinerea Reshuffles Metabolism and Reactive Oxygen Species: Dissecting Signalling and Metabolism. Antioxidants, 2020, 9, 1174.	5.1	15
13	Diurnal Changes in Water Soluble Carbohydrate Components in Leaves and Sucrose Associated TaSUT1 Gene Expression during Grain Development in Wheat. International Journal of Molecular Sciences, 2020, 21, 8276.	4.1	7
14	Sweet Immunity: The Effect of Exogenous Fructans on the Susceptibility of Apple (Malus × domestica) Tj ETQq	0 0 0 rgBT 4.1	/Qverlock 10
15	Fructans Prime ROS Dynamics and Botrytis cinerea Resistance in Arabidopsis. Antioxidants, 2020, 9, 805.	5.1	23
16	Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review. Agronomy, 2020, 10, 1975.	3.0	89
17	Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant, Cell and Environment, 2020, 43, 2254-2271.	5.7	37
	The Impact of Veest Dresence in Nector on Dumble Dec Debeuier and Fitness, Dullatin of the Feelegical		

¹⁸The Impact of Yeast Presence in Nectar on Bumble Bee Behavior and Fitness. Bulletin of the Ecological
Society of America, 2020, 101, e01636.0.20

#	Article	IF	CITATIONS
19	Fructosyltransferase Enzymes for Microbial Fructan Production. Microorganisms for Sustainability, 2020, , 1-39.	0.7	1
20	Crystal structure of <i>Arabidopsis thaliana</i> neutral invertase 2. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 152-157.	0.8	2
21	Performance Index and PSII Connectivity Under Drought and Contrasting Light Regimes in the CAM Orchid Phalaenopsis. Frontiers in Plant Science, 2019, 10, 1012.	3.6	33
22	Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis. Journal of Experimental Botany, 2019, 70, 3269-3281.	4.8	11
23	Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules, 2019, 9, 615.	4.0	50
24	Editorial: Sugars and Autophagy in Plants. Frontiers in Plant Science, 2019, 10, 1190.	3.6	8
25	Autophagy in Plants: Both a Puppet and a Puppet Master of Sugars. Frontiers in Plant Science, 2019, 10, 14.	3.6	67
26	Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling?. International Journal of Molecular Sciences, 2019, 20, 2366.	4.1	51
27	Discovery of fructans in Archaea. Carbohydrate Polymers, 2019, 220, 149-156.	10.2	46
28	Quorum Sensing in Phytopathogenesis. , 2019, , 127-149.		0
29	Sweet Immunity: Inulin Boosts Resistance of Lettuce (Lactuca sativa) against Grey Mold (Botrytis) Tj ETQq1 1 0.	784314 rg 4.1	gBT_/Overloc <mark>k</mark>
30	Linking Autophagy to Abiotic and Biotic Stress Responses. Trends in Plant Science, 2019, 24, 413-430.	8.8	203
31	Maltose Processing and Not β-Amylase Activity Curtails Hydrolytic Starch Degradation in the CAM Orchid Phalaenopsis. Frontiers in Plant Science, 2019, 10, 1386.	3.6	11
32	Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. Journal of Experimental Botany, 2018, 69, 2159-2170.	4.8	67
33	Physiological basis of chilling tolerance and early-season growth in miscanthus. Annals of Botany, 2018, 121, 281-295.	2.9	10
34	The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. Plant, Cell and Environment, 2018, 41, 16-38.	5.7	84
35	Novel fructan exohydrolase: unique properties and applications for human health. Journal of Experimental Botany, 2018, 69, 4227-4231.	4.8	20
36	Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. Frontiers in Plant Science, 2018, 9, 1009.	3.6	52

#	Article	IF	CITATIONS
37	Characterization of Fructan Metabolism During Jerusalem Artichoke (Helianthus tuberosus L.) Germination. Frontiers in Plant Science, 2018, 9, 1384.	3.6	19
38	Fructans of the saline world. Biotechnology Advances, 2018, 36, 1524-1539.	11.7	32
39	Levansucrase from Halomonas smyrnensis AAD6T: first halophilic GH-J clan enzyme recombinantly expressed, purified, and characterized. Applied Microbiology and Biotechnology, 2018, 102, 9207-9220.	3.6	33
40	Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. Plant and Cell Physiology, 2018, 59, 2004-2019.	3.1	41
41	The effect of host plants on genotype variability in fitness and honeydew composition of <i>Aphis fabae</i> . Insect Science, 2017, 24, 781-788.	3.0	7
42	The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid <i><scp>A</scp>phis fabae</i> . Physiological Entomology, 2017, 42, 125-133.	1.5	18
43	Building a fructan LC–MS2 library and its application to reveal the fine structure of cereal grain fructans. Carbohydrate Polymers, 2017, 174, 343-351.	10.2	18
44	Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Functional Ecology, 2017, 31, 2061-2069.	3.6	39
45	Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit. Frontiers in Plant Science, 2017, 8, 1785.	3.6	17
46	UDP-Glucose: A Potential Signaling Molecule in Plants?. Frontiers in Plant Science, 2017, 8, 2230.	3.6	58
47	Presence of Inulin-Type Fructo-Oligosaccharides and Shift from Raffinose Family Oligosaccharide to Fructan Metabolism in Leaves of Boxtree (Buxus sempervirens). Frontiers in Plant Science, 2016, 7, 209.	3.6	11
48	Contributions of Root WSC during Grain Filling in Wheat under Drought. Frontiers in Plant Science, 2016, 7, 904.	3.6	10
49	Exploration of Sweet Immunity to Enhance Abiotic Stress Tolerance in Plants: Lessons from CAM. Progress in Botany Fortschritte Der Botanik, 2016, , 145-166.	0.3	7
50	Impact of microbial communities on floral nectar chemistry: Potential implications for biological control of pest insects. Basic and Applied Ecology, 2016, 17, 189-198.	2.7	30
51	Fructans As DAMPs or MAMPs: Evolutionary Prospects, Cross-Tolerance, and Multistress Resistance Potential. Frontiers in Plant Science, 2016, 7, 2061.	3.6	44
52	The cost of ant attendance and melezitose secretion in the black bean aphid <i><scp>A</scp>phis fabae</i> . Ecological Entomology, 2015, 40, 511-517.	2.2	12
53	Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Frontiers in Plant Science, 2015, 6, 203.	3.6	174
54	Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions. Frontiers in Plant Science, 2015, 6, 395.	3.6	13

#	Article	IF	CITATIONS
55	1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor. Frontiers in Plant Science, 2015, 6, 616.	3.6	9
56	Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling. Frontiers in Plant Science, 2015, 6, 624.	3.6	36
57	LC-MS analysis reveals the presence of graminan- and neo-type fructans in wheat grains. Journal of Cereal Science, 2015, 61, 133-138.	3.7	34
58	Cereal grain fructans: Structure, variability and potential health effects. Trends in Food Science and Technology, 2015, 43, 32-42.	15.1	95
59	Phenotypic selection on nectar amino acid composition in the Lepidoptera pollinated orchid species <i>Gymnadenia conopsea</i> . Oikos, 2015, 124, 421-427.	2.7	17
60	The impact of nectar chemical features on phenotypic variation in two related nectar yeasts. FEMS Microbiology Ecology, 2015, 91, .	2.7	14
61	Experimental fertilization increases amino acid content in floral nectar, fruit set and degree of selfing in the orchid Gymnadenia conopsea. Oecologia, 2015, 179, 785-795.	2.0	35
62	Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Frontiers in Plant Science, 2015, 6, 89.	3.6	39
63	Fructose and Fructans: Opposite Effects on Health?. Plant Foods for Human Nutrition, 2015, 70, 227-237.	3.2	25
64	Sugars as hydroxyl radical scavengers: proofâ€ofâ€concept by studying the fate of sucralose in Arabidopsis. Plant Journal, 2015, 82, 822-839.	5.7	99
65	A wheat <i>1â€<scp>FEH</scp> w3</i> variant underlies enzyme activity for stem <scp>WSC</scp> remobilization to grain under drought. New Phytologist, 2015, 205, 293-305.	7.3	63
66	Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators. PLoS ONE, 2014, 9, e92044.	2.5	84
67	Sugars take a central position in plant growth, development and, stress responses. A focus on apical dominance. Frontiers in Plant Science, 2014, 5, 313.	3.6	47
68	Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains. Plant Cell, 2014, 26, 3728-3744.	6.6	88
69	Fructans: Prebiotics and immunomodulators. Journal of Functional Foods, 2014, 8, 348-357.	3.4	147
70	Landscape scale variation in nectar amino acid and sugar composition in a Lepidoptera pollinated orchid species and its relation with fruit set. Journal of Ecology, 2014, 102, 136-144.	4.0	45
71	Long term intermittent flooding stress affects plant growth and inulin synthesis of Cichorium intybus (var. sativum). Plant and Soil, 2014, 376, 291-305.	3.7	20
72	Cloning and characterization of a novel fructan 6-exohydrolase strongly inhibited by sucrose in Lolium perenne. Planta, 2014, 240, 629-643.	3.2	27

#	Article	IF	CITATIONS
73	Sucrose Induction of Anthocyanin Biosynthesis Is Mediated by DELLA. Molecular Plant, 2014, 7, 570-572.	8.3	98
74	Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses?. Environmental and Experimental Botany, 2014, 108, 4-13.	4.2	143
75	Vacuolar protein sorting mechanisms in plants. FEBS Journal, 2013, 280, 979-993.	4.7	99
76	Trafficking of Plant Vacuolar Invertases: From a Membrane-Anchored to a Soluble Status. Understanding Sorting Information in Their Complex N-Terminal Motifs. Plant and Cell Physiology, 2013, 54, 1263-1277.	3.1	14
77	Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels. Plant and Cell Physiology, 2013, 54, 2047-2057.	3.1	49
78	Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell and Environment, 2013, 36, 1242-1255.	5.7	626
79	Sugars as Antioxidants in Plants. , 2013, , 285-307.		39
80	Prebiotics to Fight Diseases: Reality or Fiction?. Phytotherapy Research, 2013, 27, 1457-1473.	5.8	70
81	Sugars, the clock and transition to flowering. Frontiers in Plant Science, 2013, 4, 22.	3.6	94
82	Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 2013, 4, 247.	3.6	257
83	Sedoheptulose accumulation under CO2 enrichment in leaves of Kalanchoë pinnata: a novel mechanism to enhance C and P homeostasis?. Journal of Experimental Botany, 2013, 64, 1497-1507.	4.8	18
84	Sweet immunity in the plant circadian regulatory network. Journal of Experimental Botany, 2013, 64, 1439-1449.	4.8	99
85	Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae). Annals of Botany, 2013, 111, 385-393.	2.9	19
86	Towards understanding vacuolar antioxidant mechanisms: a role for fructans?. Journal of Experimental Botany, 2013, 64, 1025-1038.	4.8	201
87	Understanding the Role of Defective Invertases in Plants: Tobacco Nin88 Fails to Degrade Sucrose Â. Plant Physiology, 2013, 161, 1670-1681.	4.8	52
88	A Simple and Accurate Method for Determining Wheat Grain Fructan Content and Average Degree of Polymerization. Journal of Agricultural and Food Chemistry, 2012, 60, 2102-2107.	5.2	81
89	pKa Modulation of the Acid/Base Catalyst within CH32 and GH68: A Role in Substrate/Inhibitor Specificity?. PLoS ONE, 2012, 7, e37453.	2.5	19
90	Sugars and plant innate immunity. Journal of Experimental Botany, 2012, 63, 3989-3998.	4.8	307

#	Article	IF	CITATIONS
91	Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress. Physiologia Plantarum, 2012, 144, 1-12.	5.2	65
92	Crystal structure of 6‣ST/6‣FT from <i>Pachysandra terminalis</i> , a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6â€kestose. Plant Journal, 2012, 70, 205-219.	5.7	44
93	Neutral invertase, hexokinase and mitochondrial ROS homeostasis. Plant Signaling and Behavior, 2011, 6, 1567-1573.	2.4	39
94	The food additives inulin and stevioside counteract oxidative stress. International Journal of Food Sciences and Nutrition, 2011, 62, 207-214.	2.8	162
95	UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. Journal of Plant Physiology, 2011, 168, 1136-1141.	3.5	79
96	Myo-inositol and beyond – Emerging networks under stress. Plant Science, 2011, 181, 387-400.	3.6	288
97	Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne). Journal of Experimental Botany, 2011, 62, 1871-1885.	4.8	34
98	Sugar ratios, glutathione redox status and phenols in the resurrection species <i>Haberlea rhodopensis</i> and the closely related nonâ€resurrection species <i>Chirita eberhardtii</i> . Plant Biology, 2011, 13, 767-776.	3.8	57
99	Unexpected Presence of Graminan- and Levan-Type Fructans in the Evergreen Frost-Hardy Eudicot <i>Pachysandra terminalis</i> (Buxaceae): Purification, Cloning, and Functional Analysis of a 6-SST/6-SFT Enzyme Â. Plant Physiology, 2011, 155, 603-614.	4.8	53
100	Exploring the neutral invertase–oxidative stress defence connection in Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62, 3849-3862.	4.8	135
101	Metabolism of galactosyl-oligosaccharides in Stellaria media – Discovery of stellariose synthase, a novel type of galactosyltransferase. Phytochemistry, 2010, 71, 1095-1103.	2.9	12
102	Post-translational processing of β-d-xylanases and changes in extractability of arabinoxylans during wheat germination. Plant Physiology and Biochemistry, 2010, 48, 90-97.	5.8	29
103	Sugar signalling and antioxidant network connections in plant cells. FEBS Journal, 2010, 277, 2022-2037.	4.7	433
104	Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17427-17432.	7.1	96
105	A Holistic Approach to Resurrection Plants. <i>Haberlea Rhodopensis</i> —A Case Study. Biotechnology and Biotechnological Equipment, 2009, 23, 1414-1416.	1.3	10
106	Creating S-type characteristics in the F-type enzyme fructan:fructan 1-fructosyltransferase of Triticum aestivum L Journal of Experimental Botany, 2009, 60, 3687-3696.	4.8	17
107	Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes. FEBS Journal, 2009, 276, 5788-5798.	4.7	68
108	Effect of ethylene glycol and glycerol fructosides on the activity and product specificity of bacterial and plant fructosyltransferases. Biocatalysis and Biotransformation, 2009, 27, 328-339.	2.0	3

#	Article	IF	CITATIONS
109	Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. Journal of Experimental Botany, 2009, 60, 727-740.	4.8	187
110	Transforming a Fructan:Fructan 6C-Fructosyltransferase from Perennial Ryegrass into a Sucrose:Sucrose 1-Fructosyltransferase Â. Plant Physiology, 2009, 149, 327-339.	4.8	49
111	An alternate sucrose binding mode in the E2O3Q <i>Arabidopsis</i> invertase mutant: An Xâ€ray crystallography and docking study. Proteins: Structure, Function and Bioinformatics, 2008, 71, 552-564.	2.6	19
112	Influencing the binding configuration of sucrose in the active sites of chicory fructan 1â€exohydrolase and sugar beet fructan 6â€exohydrolase. New Phytologist, 2008, 178, 572-580.	7.3	33
113	Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1â€fructosyltransferase. New Phytologist, 2008, 180, 822-831.	7.3	55
114	Purification, cloning and functional differences of a third fructan 1-exohydrolase (1-FEHw3) from wheat (Triticum aestivum). Physiologia Plantarum, 2008, 133, 242-253.	5.2	28
115	Crystal Structures of Arabidopsis thaliana Cell-Wall Invertase Mutants in Complex with Sucrose. Journal of Molecular Biology, 2008, 377, 378-385.	4.2	67
116	Freezing tolerance by vesicle-mediated fructan transport. Trends in Plant Science, 2008, 13, 409-414.	8.8	89
117	Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging?. Journal of Experimental Botany, 2008, 60, 9-18.	4.8	325
118	Plant fructans in stress environments: emerging concepts and future prospects. Journal of Experimental Botany, 2008, 59, 2905-2916.	4.8	321
119	Isolation and Characterization of a Pentasaccharide from <i>Stellaria media</i> . Journal of Natural Products, 2008, 71, 1833-1836.	3.0	21
120	Cloning, Characterization and Functional Analysis of a 1-FEH cDNA from Vernonia herbacea (Vell.) Rusby. Plant and Cell Physiology, 2008, 49, 1185-1195.	3.1	19
121	Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization. Journal of Experimental Botany, 2007, 58, 1969-1983.	4.8	57
122	Unraveling the Difference between Invertases and Fructan Exohydrolases: A Single Amino Acid (Asp-239) Substitution Transforms Arabidopsis Cell Wall Invertase1 into a Fructan 1-Exohydrolase. Plant Physiology, 2007, 145, 616-625.	4.8	106
123	Fructan 1-exohydrolase is associated with flower opening in Campanula rapunculoides. Functional Plant Biology, 2007, 34, 972.	2.1	23
124	The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytologist, 2007, 173, 50-62.	7.3	58
125	Insights into the fine architecture of the active site of chicory fructan 1â€exohydrolase: 1â€kestose as substrate vs sucrose as inhibitor. New Phytologist, 2007, 174, 90-100.	7.3	66
126	Nâ€glycosylation affects substrate specificity of chicory fructan 1â€exohydrolase: evidence for the presence of an inulin binding cleft. New Phytologist, 2007, 176, 317-324.	7.3	26

#	Article	IF	CITATIONS
127	Levans in Excised Leaves ofDactylis glomerata: Effects of Light, Sugars, Temperature and Senescence. Journal of Plant Biology, 2007, 50, 671-680.	2.1	31
128	X-ray diffraction structure of a cell-wall invertase fromArabidopsis thaliana. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1555-1563.	2.5	64
129	Complete NMR characterization of lychnose from Stellaria media (L.) Vill. Carbohydrate Research, 2006, 341, 2744-2750.	2.3	13
130	Cloning and functional analysis of a high DP fructan:fructan 1-fructosyl transferase from Echinops ritro (Asteraceae): comparison of the native and recombinant enzymes. Journal of Experimental Botany, 2006, 57, 775-789.	4.8	43
131	Purification, cloning and functional characterization of a fructan 6-exohydrolase from wheat (Triticum aestivum L.). Journal of Experimental Botany, 2006, 57, 213-223.	4.8	85
132	Molecular and functional characterization of a cDNA encoding fructan:fructan 6C-fructosyltransferase (6G-FFT)/fructan:fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.). Journal of Experimental Botany, 2006, 57, 2719-2734.	4.8	60
133	Molecular and functional characterization of a cDNA encoding fructan:fructan 6C-fructosyltransferase (6C-FFT)/fructan:fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.). Journal of Experimental Botany, 2006, 57, 3961-3961.	4.8	4
134	Xâ€ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1â€exohydrolase IIa of <i>Cichorium intybus</i> . Plant Journal, 2005, 41, 400-411.	5.7	107
135	Molecular cloning and characterization of a high DP fructan: fructan 1â€fructosyl transferase from <i>Viguiera discolor</i> (Asteraceae) and its heterologous expression in <i>Pichia pastoris</i> . Physiologia Plantarum, 2005, 125, 419-429.	5.2	22
136	Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant, Cell and Environment, 2005, 28, 432-443.	5.7	122
137	Cloning, characterization and functional analysis of novel 6â€kestose exohydrolases (6â€KEHs) from wheat (Triticum aestivum). New Phytologist, 2005, 166, 917-932.	7.3	82
138	Structure, Evolution, and Expression of the Two Invertase Gene Families of Rice. Journal of Molecular Evolution, 2005, 60, 615-634.	1.8	182
139	Crystallization and preliminary X-ray diffraction study of a cell-wall invertase fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 766-768.	0.7	14
140	Molecular cloning and functional analysis of a novel 6&1-FEH from wheat (Triticum aestivum L.) preferentially degrading small graminans like bifurcose. Gene, 2005, 358, 93-101.	2.2	60
141	Sweet Substitute: A software tool for in silico fragmentation of peptide-linked N-glycans. Proteomics, 2004, 4, 629-632.	2.2	24
142	Crystallization and preliminary X-ray diffraction study of fructan 1-exohydrolase IIa fromCichorium intybus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 553-554.	2.5	9
143	Plant fructan exohydrolases: a role in signaling and defense?. Trends in Plant Science, 2004, 9, 523-528.	8.8	116
144	Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold. Journal of Experimental Botany, 2004, 55, 1325-1333.	4.8	58

#	Article	IF	CITATIONS
145	Chromosomal walking of flanking regions from short known sequences in GC-rich plant genomic DNA. Plant Molecular Biology Reporter, 2003, 21, 295-302.	1.8	27
146	Extraction of high-quality genomic DNA from latex-containing plants. Analytical Biochemistry, 2003, 315, 85-89.	2.4	128
147	Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel â€~cell-wall invertase-like' specific 6-FEH from sugar beet (Beta vulgaris L.). Plant Journal, 2003, 36, 697-710.	5.7	61
148	Cloning and heterologous expression of early genes in gibberellin and steviol biosynthesis via the methylerythritol phosphate pathway in Stevia rebaudiana. Canadian Journal of Botany, 2003, 81, 517-522.	1.1	38
149	Fructan 1-Exohydrolases. β-(2,1)-Trimmers during Graminan Biosynthesis in Stems of Wheat? Purification, Characterization, Mass Mapping, and Cloning of Two Fructan 1-Exohydrolase Isoforms,. Plant Physiology, 2003, 131, 621-631.	4.8	137
150	Properties of Fructan:Fructan 1-Fructosyltransferases from Chicory and Globe Thistle, Two Asteracean Plants Storing Greatly Different Types of Inulin. Plant Physiology, 2003, 133, 391-401.	4.8	72
151	Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development. Scientific World Journal, The, 2002, 2, 1281-1295.	2.1	67
152	Cloning of a vacuolar invertase from Belgian endive leaves (Cichorium intybus). Physiologia Plantarum, 2002, 115, 504-512.	5.2	30
153	ISOLATION AND STRUCTURAL ANALYSIS OF NEW FRUCTANS PRODUCED BY CHICORY. Journal of Carbohydrate Chemistry, 2001, 20, 375-395.	1.1	33
154	Sucrose assimilation during early developmental stages of chicory (Cichorium intybus L.) plants. Planta, 2001, 212, 436-443.	3.2	18
155	Defoliation Induces Fructan 1-Exohydrolase II in Witloof Chicory Roots. Cloning and Purification of Two Isoforms, Fructan 1-Exohydrolase IIa and Fructan 1-Exohydrolase IIb. Mass Fingerprint of the Fructan 1-Exohydrolase II Enzymes. Plant Physiology, 2001, 126, 1186-1195.	4.8	86
156	Fructan accumulation induced by nitrogen deficiency in barley leaves correlates with the level of sucrose:fructan 6-fructosyltransferase mRNA. Planta, 2000, 211, 701-707.	3.2	53
157	Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta, 2000, 210, 808-814.	3.2	123
158	The role of fructan in flowering of Campanula rapunculoides. Journal of Experimental Botany, 2000, 51, 1261-1266.	4.8	101
159	Cloning, Developmental, and Tissue-Specific Expression of Sucrose:Sucrose 1-Fructosyl Transferase from Taraxacum officinale. Fructan Localization in Roots. Plant Physiology, 2000, 123, 71-80.	4.8	63
160	Cloning and functional analysis of chicory root fructan1â€exohydrolase I (1â€FEH I): a vacuolar enzyme derivedfrom a cellâ€wall invertase ancestor? Mass fingerprint of the 1â€FEH I enzyme. Plant Journal, 2000, 24, 447-456.	5.7	11
161	Cloning and functional analysis of chicory root fructan1-exohydrolase I (1-FEH I): a vacuolar enzyme derivedfrom a cell-wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme. Plant Journal, 2000, 24, 447-456.	5.7	80
162	The role of fructan in flowering of Campanula rapunculoides. Journal of Experimental Botany, 2000, 51, 1261-1266.	4.8	12

#	Article	IF	CITATIONS
163	Effect of nitrogen concentration on fructan and fructan metabolizing enzymes in young chicory plants (Cichorium intybus). Physiologia Plantarum, 1999, 105, 2-8.	5.2	38
164	Purification and properties of a second fructan exohydrolase from the roots of Cichorium intybus. Physiologia Plantarum, 1999, 106, 28-34.	5.2	52
165	Effect of defoliation on fructan pattern and fructan metabolizing enzymes in young chicory plants (Cichorium intybus). Physiologia Plantarum, 1999, 106, 158-163.	5.2	38
166	Effect of osmolytes on the fructan pattern in feeder roots produced during forcing of chicory (Cichorium intybus L.). Journal of Plant Physiology, 1998, 153, 290-298.	3.5	21
167	Fructan synthesizing and degrading activities in chicory roots (Cichorium intybus L.) during field-growth, storage and forcing. Journal of Plant Physiology, 1996, 149, 43-50.	3.5	71
168	In vitro synthesis of fractofuranosyl-only oligosaccharides from inulin and fructose by purified chicory root fructan:fructan fructosyl transferase. Physiologia Plantarum, 1996, 97, 346-352.	5.2	50
169	Purification and characterization of fructan: fructan fructosyl transferase from chicory (Cichorium) Tj ETQq1 1 0.	784314 rg 3.2	gBT /Overlock
170	De-novo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes (sucrose: sucrose 1-fructosyl transferase and fructan: fructan 1-fructosyl transferase) from chicory roots (Cichorium intybus L.). Planta, 1996, 200, 335-342.	3.2	74
171	The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing. New Phytologist, 1996, 132, 555-563.	7.3	96
172	Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots (Cichorium intybus). Physiologia Plantarum, 1996, 98, 455-466.	5.2	17
173	Variation in thein vitrogenerated fructan pattern from sucrose as a function of the purified chicory root 1-SST and 1-FFT concentrations. Journal of Experimental Botany, 1996, 47, 1797-1803.	4.8	19
174	Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots (Cichorium intybus). Physiologia Plantarum, 1996, 98, 455-466.	5.2	37
175	Purification and properties of a neutral invertase from the roots of Cichorium intybus. Physiologia Plantarum, 1995, 93, 241-248.	5.2	43
176	Purification and properties of a neutral invertase from the roots of Cichorium intybus. Physiologia Plantarum, 1995, 93, 241-248.	5.2	35
177	Purification and properties of an invertase with sucrose: sucrose fructosyltransferase (SST) activity from the roots of <i>Cichorium intybus</i> L. New Phytologist, 1993, 123, 31-37.	7.3	32