List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7725393/publications.pdf Version: 2024-02-01

	36203	33814
11,571	51	99
citations	h-index	g-index
224	224	8144
docs citations	times ranked	citing authors
	11,571 citations 224 docs citations	11,57151citationsh-index224224docs citationstimes ranked

#	Article	IF	CITATIONS
1	Achieving over 16% efficiency for single-junction organic solar cells. Science China Chemistry, 2019, 62, 746-752.	4.2	817
2	Highâ€Mobility Fieldâ€Effect Transistors Fabricated with Macroscopic Aligned Semiconducting Polymers. Advanced Materials, 2014, 26, 2993-2998.	11.1	524
3	White Polymer Lightâ€Emitting Devices for Solidâ€State Lighting: Materials, Devices, and Recent Progress. Advanced Materials, 2014, 26, 2459-2473.	11.1	464
4	Progress and perspective of polymer white light-emitting devices and materials. Chemical Society Reviews, 2009, 38, 3391.	18.7	405
5	Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties. Advanced Energy Materials, 2020, 10, 1904234.	10.2	402
6	Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy and Environmental Science, 2017, 10, 1243-1251.	15.6	346
7	Allâ€Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxaneâ€Functionalized Side Chains with Efficiency over 10%. Advanced Materials, 2017, 29, 1703906.	11.1	332
8	A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy and Environmental Science, 2019, 12, 157-163.	15.6	287
9	Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nature Energy, 2018, 3, 1051-1058.	19.8	281
10	14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy, 2020, 72, 104718.	8.2	280
11	Aggregationâ€Induced Multilength Scaled Morphology Enabling 11.76% Efficiency in Allâ€Polymer Solar Cells Using Printing Fabrication. Advanced Materials, 2019, 31, e1902899.	11.1	270
12	A Novel Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c′</i>]Bis([1,2,5]Thiadiazole)â€Based Narrowâ€Bandgap π Conju Polymer with Power Conversion Efficiency Over 10%. Advanced Materials, 2016, 28, 9811-9818.	gated	230
13	Regioregular Pyridal[2,1,3]thiadiazole π-Conjugated Copolymers. Journal of the American Chemical Society, 2011, 133, 18538-18541.	6.6	213
14	High Mobility Field Effect Transistors Based on Macroscopically Oriented Regioregular Copolymers. Nano Letters, 2012, 12, 6353-6357.	4.5	204
15	Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nature Communications, 2017, 8, 14047.	5.8	182
16	Molecular Doping Enhances Photoconductivity in Polymer Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 7038-7044.	11.1	173
17	A Universal Fluorinated Polymer Acceptor Enables All-Polymer Solar Cells with >15% Efficiency. ACS Energy Letters, 2020, 5, 3702-3707.	8.8	152
18	Highâ€Performance Nonfullerene Polymer Solar Cells based on Imideâ€Functionalized Wideâ€Bandgap Polymers. Advanced Materials, 2017, 29, 1606396.	11.1	147

#	Article	IF	CITATIONS
19	Thick Film Polymer Solar Cells Based on Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i>]bis[1,2,5]thiadiazole Conjugated Polymers with Efficiency over 11%. Advanced Energy Materials, 2017, 7, 1700944.	10.2	136
20	Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nature Communications, 2019, 10, 4100.	5.8	129
21	A Series of New Mediumâ€Bandgap Conjugated Polymers Based on Naphtho[1,2â€c:5,6â€c]bis(2â€octylâ€{1,2,3]triazole) for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 3683-3688.	11.1	125
22	Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 17619-17631.	5.2	116
23	Highâ€Performance Thickâ€Film Allâ€Polymer Solar Cells Created Via Ternary Blending of a Novel Wideâ€Bandgap Electronâ€Donating Copolymer. Advanced Energy Materials, 2018, 8, 1703085.	10.2	115
24	Ambient Processable and Stable Allâ€Polymer Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1806747.	7.8	111
25	Towards a bright future: polymer solar cells with power conversion efficiencies over 10%. Science China Chemistry, 2017, 60, 571-582.	4.2	109
26	Improved Performance of Ternary Polymer Solar Cells Based on A Nonfullerene Electron Cascade Acceptor. Advanced Energy Materials, 2017, 7, 1602127.	10.2	108
27	Tailoring Regioisomeric Structures of ï€-Conjugated Polymers Containing Monofluorinated ï€-Bridges for Highly Efficient Polymer Solar Cells. ACS Energy Letters, 2020, 5, 2087-2094.	8.8	101
28	11.2% Allâ€Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability. Advanced Materials, 2018, 30, e1803166.	11.1	92
29	Recent advances in high performance solution processed WOLEDs for solid-state lighting. Journal of Materials Chemistry C, 2016, 4, 10993-11006.	2.7	84
30	Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy, 2019, 64, 103931.	8.2	81
31	Nearâ€infrared organic photoelectric materials for lightâ€harvesting systems: Organic photovoltaics and organic photodiodes. InformaÄnÃ-Materiály, 2020, 2, 57-91.	8.5	78
32	Effect of Backbone Regioregularity on the Structure and Orientation of a Donor–Acceptor Semiconducting Copolymer. Macromolecules, 2014, 47, 1403-1410.	2.2	76
33	Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S,S-dioxide isomers into polyfluorene backbone. Organic Electronics, 2009, 10, 901-909.	1.4	75
34	Design and Synthesis of Copolymers of Indacenodithiophene and Naphtho[1,2- <i>c</i> :5,6- <i>c</i>]bis(1,2,5-thiadiazole) for Polymer Solar Cells. Macromolecules, 2013, 46, 3950-3958.	2.2	69
35	Donor–Acceptor Copolymers Based on Thermally Cleavable Indigo, Isoindigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9038-9051.	4.0	69
36	Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63%. Advanced Science, 2016, 3, 1600032.	5.6	69

#	Article	IF	CITATIONS
37	Novel efficient blue and bluish-green light-emitting polymers with delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 2690-2695.	2.7	69
38	Non-fullerene acceptors based on fused-ring oligomers for efficient polymer solar cells <i>via</i> complementary light-absorption. Journal of Materials Chemistry A, 2017, 5, 23926-23936.	5.2	65
39	Engineering the morphology <i>via</i> processing additives in multiple all-polymer solar cells for improved performance. Journal of Materials Chemistry A, 2018, 6, 10421-10432.	5.2	65
40	Dark Current Reduction Strategy via a Layer-By-Layer Solution Process for a High-Performance All-Polymer Photodetector. ACS Applied Materials & Interfaces, 2019, 11, 8350-8356.	4.0	64
41	Enhanced Photovoltaic Performance of Ternary Polymer Solar Cells by Incorporation of a Narrow-Bandgap Nonfullerene Acceptor. Chemistry of Materials, 2017, 29, 8177-8186.	3.2	63
42	Narrow-Band-Gap Conjugated Polymers Based on 2,7-Dioctyl-Substituted Dibenzo[<i>a,c</i>]phenazine Derivatives for Polymer Solar Cells. Macromolecules, 2014, 47, 2921-2928.	2.2	62
43	Crosslinkable Aminoâ€Functionalized Conjugated Polymer as Cathode Interlayer for Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1502563.	10.2	62
44	Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy, 2018, 51, 434-441.	8.2	61
45	Enabling High Efficiency of Hydrocarbonâ€Solvent Processed Organic Solar Cells through Balanced Charge Generation and Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2101768.	10.2	61
46	Novel white-light-emitting polyfluorenes with benzothiadiazole and Ir complex on the backbone. Polymer, 2009, 50, 1430-1437.	1.8	60
47	Recent progress in thickâ€film organic photovoltaic devices: Materials, devices, and processing. SusMat, 2021, 1, 4-23.	7.8	59
48	Optimizing Microstructure Morphology and Reducing Electronic Losses in 1 cm ² Polymer Solar Cells to Achieve Efficiency over 15%. ACS Energy Letters, 2019, 4, 2466-2472.	8.8	58
49	Novel light-emitting electrophosphorescent copolymers based on carbazole with an Ir complex on the backbone. Journal of Materials Chemistry, 2007, 17, 2824.	6.7	55
50	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. Journal of Materials Chemistry A, 2015, 3, 18483-18491.	5.2	55
51	High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS Applied Materials & Interfaces, 2019, 11, 14208-14214.	4.0	54
52	Novel green-light-emitting hyperbranched polymers with iridium complex as core and 3,6-carbazole-co-2,6-pyridine unit as branch. Journal of Materials Chemistry, 2009, 19, 531-537.	6.7	53
53	The Density of States and the Transport Effective Mass in a Highly Oriented Semiconducting Polymer: Electronic Delocalization in 1D. Advanced Materials, 2015, 27, 7759-7765.	11.1	52
54	Understanding of Imine Substitution in Wide-Bandgap Polymer Donor-Induced Efficiency Enhancement in All-Polymer Solar Cells. Chemistry of Materials, 2019, 31, 8533-8542.	3.2	49

#	Article	IF	CITATIONS
55	Improving the efficiency and stability of non-fullerene polymer solar cells by using N2200 as the Additive. Nano Energy, 2019, 58, 724-731.	8.2	49
56	Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells. Nano Energy, 2019, 59, 277-284.	8.2	47
57	Highly Efficient Tandem Organic Solar Cell Enabled by Environmentally Friendly Solvent Processed Polymeric Interconnecting Layer. Advanced Energy Materials, 2018, 8, 1703180.	10.2	44
58	Regioregular pyridyl[2,1,3]thiadiazole-co-indacenodithiophene conjugated polymers. Chemical Communications, 2013, 49, 7192.	2.2	43
59	Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Science China Chemistry, 2018, 61, 427-436.	4.2	43
60	Cationic Polyfluorene- <i>b</i> -Neutral Polyfluorene "Rod–Rod―Diblock Copolymers. Macromolecules, 2012, 45, 4441-4446.	2.2	42
61	High-Detectivity Non-Fullerene Organic Photodetectors Enabled by a Cross-Linkable Electron Blocking Layer. ACS Applied Materials & Interfaces, 2020, 12, 45092-45100.	4.0	42
62	Crosslinkable triphenylamine-based hole-transporting polymers for solution-processed polymer light-emitting diodes. Organic Electronics, 2018, 53, 35-42.	1.4	39
63	Polymer Preâ€Aggregation Enables Optimal Morphology and High Performance in Allâ€Polymer Solar Cells. Solar Rrl, 2020, 4, 1900385.	3.1	39
64	Improved Morphology and Efficiency of Polymer Solar Cells by Processing Donor–Acceptor Copolymer Additives. Advanced Functional Materials, 2016, 26, 6479-6488.	7.8	36
65	Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cell with an efficiency of 13.8%. Chemical Communications, 2021, 57, 935-938.	2.2	36
66	Red light-emitting hyperbranched fluorene-alt-carbazole copolymers with an iridium complex as the core. Polymer Chemistry, 2011, 2, 2193.	1.9	35
67	Design and synthesis of star-burst triphenyamine-based π-conjugated molecules. Dyes and Pigments, 2015, 113, 1-7.	2.0	35
68	High-detectivity organic photodetectors based on a thick-film photoactive layer using a conjugated polymer containing a naphtho[1,2- <i>c</i> :5,6- <i>c</i>]bis[1,2,5]thiadiazole unit. Journal of Materials Chemistry C. 2019, 7, 6070-6076.	2.7	35
69	Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive. Chinese Journal of Polymer Science (English Edition), 2020, 38, 323-331.	2.0	35
70	[1,2,5]Thiadiazolo[3,4-f]benzotriazole based narrow band gap conjugated polymers with photocurrent response up to 1.11¼m. Organic Electronics, 2013, 14, 2459-2467.	1.4	34
71	The effect of methanol treatment on the performance of polymer solar cells. Nanotechnology, 2013, 24, 484003.	1.3	34
72	Blue lightâ€emitting hyperbranched polymers using fluoreneâ€ <i>co</i> â€dibenzothiopheneâ€ <scp><i>S,S</i></scp> â€dioxide as branches. Journal of Polymer Science Part A, 2015, 53, 1043-1051.	2.5	34

#	Article	IF	CITATIONS
73	Wide bandgap dithienobenzodithiophene-based π-conjugated polymers consisting of fluorinated benzotriazole and benzothiadiazole for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 4719-4727.	2.7	34
74	White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer. ACS Applied Materials & amp; Interfaces, 2016, 8, 6164-6173.	4.0	34
75	Regioisomeric Non-Fullerene Acceptors Containing Fluorobenzo[<i>c</i>][1,2,5]thiadiazole Unit for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 37087-37093.	4.0	33
76	Novel perylene diimide based polymeric electron-acceptors containing ethynyl as the π-bridge for all-polymer solar cells. Organic Electronics, 2017, 45, 227-233.	1.4	31
77	Copper Thiocyanate as an Anode Interfacial Layer for Efficient Near-Infrared Organic Photodetector. ACS Applied Materials & Interfaces, 2021, 13, 1027-1034.	4.0	31
78	Efficient red-light-emitting diodes based on novel amino-alkyl containing electrophosphorescent polyfluorenes with Al or Au as cathode. Organic Electronics, 2009, 10, 42-47.	1.4	30
79	Improved efficiency of blue polymer light-emitting diodes using a hole transport material. Journal of Materials Chemistry C, 2017, 5, 5096-5101.	2.7	30
80	Comprehensive Investigation and Analysis of Bulk-Heterojunction Microstructure of High-Performance PCE11:PCBM Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 18555-18563.	4.0	30
81	Improving photovoltaic parameters of all-polymer solar cells through integrating two polymeric donors. Science China Chemistry, 2021, 64, 2010-2016.	4.2	30
82	Synthesis of two-dimensional π-conjugated polymers pendent with benzothiadiazole and naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole moieties for polymer solar cells. Science China Chemistry, 2015, 58, 257-266.	4.2	29
83	In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display. Journal of Materials Chemistry C, 2017, 5, 5005-5009.	2.7	29
84	Carbazole-diphenylimidazole based bipolar material and its application in blue, green and red single layer OLEDs by solution processing. Dyes and Pigments, 2017, 142, 175-182.	2.0	29
85	Efficient All-Polymer Solar Cells Based on Conjugated Polymer Containing an Alkoxylated Imide-Functionalized Benzotriazole Unit. Macromolecules, 2017, 50, 8149-8157.	2.2	29
86	Highly efficient inkjet printed flexible organic light-emitting diodes with hybrid hole injection layer. Organic Electronics, 2020, 85, 105822.	1.4	29
87	Overcoming incompatibility of donors and acceptors by constructing planar heterojunction organic solar cells. Nano Energy, 2021, 85, 105957.	8.2	29
88	8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors. Science China Chemistry, 2018, 61, 576-583.	4.2	28
89	Ternary organic photodiodes with spectral response from 300 to 1200 nm for spectrometer application. Science China Materials, 2021, 64, 2430-2438.	3.5	28
90	Novel orange-red light-emitting polymers with cyclometaled iridium complex grafted in alkyl chain. Journal of Organometallic Chemistry, 2009, 694, 2727-2734.	0.8	27

#	Article	IF	CITATIONS
91	Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene. Nanotechnology, 2016, 27, 284001.	1.3	27
92	Acenaphtho[1,2- b]quinoxaline diimides derivative as a potential small molecule non-fullerene acceptor for organic solar cells. Organic Electronics, 2016, 30, 176-181.	1.4	27
93	High-Performance Organic Field-Effect Transistors Fabricated Based on a Novel Ternary π-Conjugated Copolymer. ACS Applied Materials & Interfaces, 2017, 9, 7315-7321.	4.0	27
94	Chlorinated Fused Nonacyclic Non-Fullerene Acceptor Enables Efficient Large-Area Polymer Solar Cells with High Scalability. Chemistry of Materials, 2020, 32, 1022-1030.	3.2	27
95	Methanol treatment on low-conductive PEDOT:PSS to enhance the PLED's performance. Organic Electronics, 2016, 28, 252-256.	1.4	26
96	On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 7855-7863.	2.7	26
97	Highâ€Performance Green Solvent Processed Ternary Blended Allâ€Polymer Solar Cells Enabled by Complementary Absorption and Improved Morphology. Solar Rrl, 2018, 2, 1800196.	3.1	26
98	Efficient white polymer light-emitting diodes from single polymer exciplex electroluminescence. Journal of Materials Chemistry C, 2017, 5, 2397-2403.	2.7	25
99	Design and synthesis of non-fullerene acceptors based on a quinoxalineimide moiety as the central building block for organic solar cells. Chemical Communications, 2020, 56, 4700-4703.	2.2	25
100	Highly efficient single-layer blue polymer light-emitting diodes based on hole-transporting group substituted poly(fluorene-co-dibenzothiophene-S,S-dioxide). Journal of Materials Chemistry C, 2017, 5, 9680-9686.	2.7	24
101	Sky-blue fluorescent small-molecules with high quantum efficiency: synthesis, structures, AIE properties, and applications in solution-processed non-doped OLEDs. Journal of Materials Chemistry C, 2019, 7, 3553-3559.	2.7	24
102	Novel, blue light-emitting polyfluorenes containing a fluorinated quinoxaline unit. Dyes and Pigments, 2009, 82, 251-257.	2.0	23
103	Synthesis of donor–acceptor copolymers based on anthracene derivatives for polymer solar cells. Polymer Chemistry, 2013, 4, 3949.	1.9	23
104	Dithienosilole-benzothiadiazole-based ternary copolymers with a D ₁ –A–D ₂ –A structure for polymer solar cells. Polymer Chemistry, 2015, 6, 4154-4161.	1.9	23
105	Nanowires of indigo and isoindigo-based molecules with thermally removable groups. Dyes and Pigments, 2016, 125, 54-63.	2.0	23
106	Introducing cyclic alkyl chains into small-molecule acceptors for efficient polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 7046-7053.	2.7	23
107	In Vivo Bioimaging and Photodynamic Therapy Based on Two-Photon Fluorescent Conjugated Polymers Containing Dibenzothiophene- <i>S</i> , <i>S</i> -dioxide Derivatives. ACS Applied Materials & Interfaces, 2020, 12, 57281-57289.	4.0	23
108	Fine Tuning Miscibility of Donor/Acceptor through Solid Additives Enables Allâ€Polymer Solar Cells with 15.6% Efficiency. Solar Rrl, 2021, 5, 2100549.	3.1	23

#	Article	IF	CITATIONS
109	Allâ€Conjugated Triblock Polyelectrolytes. Advanced Materials, 2012, 24, 6496-6501.	11.1	22
110	Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer. Journal of Luminescence, 2013, 142, 35-39.	1.5	22
111	Improved electroluminescence efficiency of polyfluorenes by simultaneously incorporating dibenzothiophene-S,S-dioxide unit in main chain and oxadiazole moiety in side chain. Polymer, 2014, 55, 1698-1706.	1.8	22
112	Novel medium band gap conjugated polymers based on naphtho[1,2-c:5,6-c]bis[1,2,3]triazole for polymer solar cells. Polymer, 2015, 67, 40-46.	1.8	22
113	Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices. Dyes and Pigments, 2016, 131, 41-48.	2.0	22
114	Effect of Monofluoro Substitution on the Optoelectronic Properties of Benzo[<i>c</i>][1,2,5]thiadiazole Based Organic Semiconductors. Macromolecules, 2016, 49, 5806-5816.	2.2	22
115	Improving electroluminescent performance of blue light-emitting poly(fluorene-co-dibenzothiophene-S,S-dioxide) by end-capping. Organic Electronics, 2017, 48, 118-126.	1.4	22
116	Improved Efficiency of Polymer Solar Cells by Modifying the Side Chain of Wide-Band Gap Conjugated Polymers Containing Pyrrolo[3,4-‹i›f‹/i›]benzotriazole-5,7(6‹i›H‹/i›)-dione Moiety. ACS Applied Materials & Interfaces, 2018, 10, 22495-22503.	4.0	22
117	Ultrahigh photosensitive organic phototransistors by photoelectric dual control. Journal of Materials Chemistry C, 2019, 7, 4725-4732.	2.7	22
118	Efficient white emitting copolymers based on bipolar fluorene-co-dibenzothiophene-S,S-dioxide-co-carbazole backbone. Chinese Journal of Polymer Science (English Edition), 2013, 31, 88-97.	2.0	21
119	Hyperbranched red light-emitting phosphorescent polymers based on iridium complex as the core. Journal of Luminescence, 2015, 167, 179-185.	1.5	21
120	Asymmetric Alkyl Sideâ€Chain Engineering of Naphthalene Diimideâ€Based nâ€Type Polymers for Efficient Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700765.	2.0	21
121	A thermally cross-linked hole-transporting film with the remarkable solvent resistance for solution-processed OLEDs. Organic Electronics, 2018, 57, 345-351.	1.4	21
122	Formation of poly(9,9-dioctylfluorene) β-phase by incorporating aromatic moiety in side chain. Organic Electronics, 2016, 38, 130-138.	1.4	20
123	Lateral Polymer Photodetectors Using Silver Nanoparticles Promoted PffBT4T-2OD:PC61BM Composite. ACS Photonics, 2018, 5, 4650-4659.	3.2	20
124	In Situ Structure Characterization in Slotâ€Dieâ€Printed Allâ€Polymer Solar Cells with Efficiency Over 9%. Solar Rrl, 2019, 3, 1900032.	3.1	20
125	Toward Efficient Tandem Organic Solar Cells: From Materials to Device Engineering. ACS Applied Materials & Interfaces, 2020, 12, 39937-39947.	4.0	20
126	Ultrahigh Detectivity in Spatially Separated Hole/Electron Dual Traps Based Nearâ€Infrared Organic Phototransistor. Advanced Optical Materials, 2021, 9, 2002031.	3.6	20

#	Article	IF	CITATIONS
127	Review on Y6-Based Semiconductor Materials and Their Future Development via Machine Learning. Crystals, 2022, 12, 168.	1.0	20
128	Recent Progresses of Iridium Complex-Containing Macromolecules for Solution-Processed Organic Light-Emitting Diodes. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 905-926.	1.9	19
129	Effects of bridge units on the properties of indolo[3,2-b]carbazole-co-difluorobenzo[d][1,2,3]triazole based π-conjugated copolymers. Organic Electronics, 2015, 23, 17-27.	1.4	19
130	Donor–acceptor conjugated polymers based on cyclic imide substituted quinoxaline or dibenzo[a,c]phenazine for polymer solar cells. Polymer Chemistry, 2015, 6, 7558-7569.	1.9	19
131	Cross-conjugated n-type polymer acceptors for efficient all-polymer solar cells. Chemical Communications, 2018, 54, 2204-2207.	2.2	18
132	Organic/Inorganic Hybrid EIL for Allâ€Solutionâ€Processed OLEDs. Advanced Electronic Materials, 2018, 4, 1700380.	2.6	18
133	Recent Progress in Allâ€Polymer Solar Cells Based on Wideâ€Bandgap pâ€Type Polymers. Chemistry - an Asian Journal, 2019, 14, 3109-3118.	1.7	18
134	Improving the efficiency and spectral stability of white-emitting polycarbazoles by introducing a dibenzothiophene-S,S-dioxide unit into the backbone. Journal of Materials Chemistry C, 2014, 2, 7881.	2.7	17
135	Effects of flanked units on optoelectronic properties of diketopyrrolopyrrole based π-conjugated polymers. Dyes and Pigments, 2015, 123, 64-71.	2.0	17
136	The effects of solvent vapor annealing on the performance of blue polymer light-emitting diodes. Organic Electronics, 2015, 27, 1-6.	1.4	17
137	Synthesis of regioregular ï€-conjugated polymers consisting of a lactam moiety via direct heteroarylation polymerization. Chemical Communications, 2017, 53, 1997-2000.	2.2	17
138	Microwave-assisted one-pot three-component polymerization of alkynes, aldehydes and amines toward amino-functionalized optoelectronic polymers. Chinese Journal of Polymer Science (English Edition), 2017, 35, 269-281.	2.0	17
139	Enhanced performance of P3HT-based non-fullerene polymer solar cells by optimizing film morphology using non-halogenated solvent. Organic Electronics, 2020, 82, 105701.	1.4	17
140	Improving the Performance of Blue Polymer Light-Emitting Diodes Using a Hole Injection Layer with a High Work Function and Nanotexture. ACS Applied Materials & Interfaces, 2020, 12, 20750-20756.	4.0	17
141	Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss. Chinese Journal of Polymer Science (English Edition), 2020, 38, 791-796.	2.0	17
142	Reconstruction of Conjugated Oligoelectrolyte Electron Injection Layers. Journal of the American Chemical Society, 2010, 132, 12160-12162.	6.6	16
143	An Alkane-Soluble Dendrimer as Electron-Transport Layer in Polymer Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 20237-20242.	4.0	16
144	Phosphonium conjugated polyelectrolytes as interface materials for efficient polymer solar cells. Organic Electronics, 2018, 57, 151-157.	1.4	16

#	Article	IF	CITATIONS
145	Achieving highly efficient blue light-emitting polymers by incorporating a styrylarylene amine unit. Journal of Materials Chemistry C, 2018, 6, 12355-12363.	2.7	16
146	Manipulating Film Morphology of Allâ€Polymer Solar Cells by Incorporating Polymer Compatibilizer. Solar Rrl, 2020, 4, 2000148.	3.1	16
147	Decoupling Complex Multiâ€Lengthâ€Scale Morphology in Nonâ€Fullerene Photovoltaics with Nitrogen Kâ€Edge Resonant Soft Xâ€ray Scattering. Advanced Materials, 2022, 34, e2107316.	11.1	16
148	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis([1,2,5]thiadiazole)] moiety. Journal of Materials Chemistry A, 2018, 6, 23295-23300.	5.2	15
149	Star-like n-type conjugated polymers based on naphthalenediimide for all-polymer solar cells. Dyes and Pigments, 2018, 159, 85-91.	2.0	15
150	Dual hole transport layers for blue-light-emitting PLED: Suppress the formation of exciplex towards high device performance and color purity. Organic Electronics, 2019, 68, 103-107.	1.4	15
151	Halogen-Bond-Controlled Self-Assembly of Regioisomeric Phenanthridine Derivatives into Nanowires and Nanosheets. Journal of Physical Chemistry C, 2020, 124, 5665-5671.	1.5	15
152	The Brâ∢ï€ halogen bond assisted self-assembly of an asymmetric molecule regulated by concentration. Chemical Communications, 2020, 56, 2727-2730.	2.2	15
153	A universal strategy via polymerizing non-fullerene small molecule acceptors enables efficient all-polymer solar cells withÁ>Â1Áyear excellent thermal stability. Chemical Engineering Journal, 2022, 430, 132711.	6.6	15
154	Design and synthesis of an amino-functionalized non-fullerene acceptor as a cathode interfacial layer for polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 5273-5279.	2.7	14
155	Elucidating Halogenâ€Assisted Selfâ€Assembly Enhanced Mechanochromic Aggregationâ€Induced Emission. ChemPhotoChem, 2021, 5, 626-631.	1.5	14
156	Conquering the morphology barrier of ternary all-polymer solar cells by designing random terpolymer for constructing efficient binary all-polymer solar cells. Chemical Engineering Journal, 2022, 439, 135491.	6.6	14
157	Achieving halogen bonding enhanced ultra-highly efficient AIE and reversible mechanochromism properties of TPE-based luminogens: position of bromine substituents. Journal of Materials Chemistry C, 2022, 10, 8390-8399.	2.7	14
158	Novel Red Lightâ€Emitting Fluoreneâ€ <i>alt</i> arbazole Copolymers with Carbazole <i>N</i> â€Graft Cyclometalated Ir Complexes. Macromolecular Chemistry and Physics, 2009, 210, 457-466.	1.1	13
159	Effects of pyridyl group orientations on the optoelectronic properties of regio-isomeric diketopyrrolopyrrole based ï€-conjugated polymers. Journal of Materials Chemistry C, 2016, 4, 2470-2479.	2.7	13
160	Highly efficient blue polyfluorenes using blending materials as hole transport layer. Organic Electronics, 2017, 51, 111-118.	1.4	13
161	Naphthalene Diimide-Based Polymers Consisting of Amino Alkyl Side Groups:Three-Component One-Pot Polymerization and Their Application in Polymer Solar Cells. Acta Chimica Sinica, 2017, 75, 808.	0.5	13
162	A solution-processed and low threshold voltage p-type small molecule based on indolocarbazole- and benzothiophene-fused rings. Dyes and Pigments, 2017, 144, 32-40.	2.0	12

#	Article	IF	CITATIONS
163	Synthesis and characterization of highly efficient solution-processable orange Ir(III) complexes for phosphorescent OLED applications. Organic Electronics, 2018, 57, 178-185.	1.4	12
164	Improved performance of non-fullerene polymer solar cells using wide-bandgap random terpolymers. Organic Electronics, 2018, 57, 317-322.	1.4	12
165	Optimization of processing solvent and film morphology to achieve efficient non-fullerene polymer solar cells processed in air. Journal of Materials Chemistry C, 2020, 8, 270-275.	2.7	12
166	Synthesis and Photovoltaic Performance of Water/Alcohol Soluble Small Phorphyrin Derivatives for Polymer Solar Cells. Acta Chimica Sinica, 2015, 73, 1153.	0.5	12
167	Uniform inkjet-printed films with single solvent. Thin Solid Films, 2018, 667, 21-27.	0.8	11
168	Efficient Non-fullerene Organic Solar Cells Enabled by Sequential Fluorination of Small-Molecule Electron Acceptors. Frontiers in Chemistry, 2018, 6, 303.	1.8	11
169	Improving the electroluminescence performance of blue light-emitting poly(fluorene- <i>co</i> -dibenzothiophene- <i>S</i> , <i>S</i> -dioxide) by tuning the intra-molecular charge transfer effects and temperature-induced orientation of the emissive layer structure. Journal of Materials Chemistry C. 2019. 7. 5630-5638.	2.7	11
170	Flexible ITO-free sky-blue polymer light-emitting diodes and printed polymer solar cells based on AgNW/PI transparent conductive electrode. Flexible and Printed Electronics, 2020, 5, 014003.	1.5	11
171	Targeted Adjusting Molecular Arrangement in Organic Solar Cells via a Universal Solid Additive. Advanced Functional Materials, 2022, 32, .	7.8	11
172	Novel aminoalkyl-functionalized blue-, green- and red-emitting polyfluorenes. Organic Electronics, 2014, 15, 850-857.	1.4	10
173	Synthesis of mediumâ€bandgap ï€â€Conjugated polymers based on isomers of 5â€Alkylphenanthridinâ€6(5H)â€ and 6â€Alkoxylphenanthridine. Journal of Polymer Science Part A, 2016, 54, 2119-2127.	one 2.5	10
174	Synthesis and characterization of ï€-conjugated copolymers based on alkyltriazolyl substituted benzodithiophene. New Journal of Chemistry, 2016, 40, 4727-4734.	1.4	10
175	Alcoholâ€Soluble Electronâ€Transport Materials for Fully Solutionâ€Processed Green PhOLEDs. Chemistry - an Asian Journal, 2018, 13, 1335-1341.	1.7	10
176	Synthesis and properties of five ring fused aromatic compounds based on <i>S</i> , <i>S</i> -dioxide benzothiophene. New Journal of Chemistry, 2018, 42, 2750-2757.	1.4	10
177	Synthesis and properties of blue-light-emitting Oligo(fluorene-co-dibenzothiophene-S,S-dioxide)s. Dyes and Pigments, 2019, 166, 502-514.	2.0	10
178	Deepâ€blue lightâ€emitting polyfluorenes with asymmetrical naphthylthioâ€fluorene as Chromophores. Journal of Polymer Science Part A, 2019, 57, 171-182.	2.5	10
179	Improving the Electroluminescent Performance of Blue Light-Emitting Polymers by Side-Chain Modification. ACS Applied Materials & Interfaces, 2020, 12, 8495-8502.	4.0	10
	Spectrally stable deep blue-emitting polyfluorenes containing <inline-formula><math <="" display="inline" td=""><td></td><td></td></math></inline-formula>		

interview overflow="scroll"><mrow><mtext>dibenzothiophene</mtext><mtext>-</mtext><mtext><mi>S</mi><mo>,</mo><mi>S</me></mtext moiety. Journal of Photonics for Energy, 2012, 2, 021212.

#	Article	IF	CITATIONS
181	Efficient π-conjugated interrupted host polymer by metal-free polymerization for blue/green phosphorescent light-emitting diodes. Journal of Polymer Science Part A, 2014, 52, 1037-1046.	2.5	9
182	Semi-orthogonal solution-processed polyfluorene derivative for multilayer blue polymer light-emitting diodes. Organic Electronics, 2018, 54, 133-139.	1.4	9
183	Efficient dendrimers based on naphthalene indenofluorene for two-photon fluorescent imaging in living cells and tissues. Journal of Materials Chemistry C, 2020, 8, 2160-2170.	2.7	9
184	Tailoring the side chain of imide-functional benzotriazole based polymers to achieve internal quantum efficiency approaching 100%. Journal of Materials Chemistry A, 2020, 8, 23519-23525.	5.2	9
185	Suppressing non-radiative loss via a low-cost solvent additive enables high-stable all-polymer solar cells with 16.13% efficiency. Chemical Engineering Journal, 2022, 446, 136877.	6.6	9
186	Efficient Green Electrophosphorescence with Al Cathode Using an Effective Electron-Injecting Polymer As the Host. ACS Applied Materials & amp; Interfaces, 2009, 1, 2785-2788.	4.0	8
187	Dibenzothiophene- S,S -dioxide based medium-band-gap polymers for efficient bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2950-2958.	1.4	8
188	Polymer Solar Cells: Crosslinkable Aminoâ€Functionalized Conjugated Polymer as Cathode Interlayer for Efficient Inverted Polymer Solar Cells (Adv. Energy Mater. 11/2016). Advanced Energy Materials, 2016, 6, .	10.2	8
189	Non-fullerene acceptors end-capped with an extended conjugation group for efficient polymer solar cells. Organic Electronics, 2018, 59, 366-373.	1.4	8
190	Modifying the organic/metal interface <i>via</i> solvent vapor annealing to enhance the performance of blue OLEDs. Journal of Materials Chemistry C, 2019, 7, 4784-4790.	2.7	8
191	Energy level gradient trapping based on different work functions of ZnO enhancing response and stablity for lateral photodetectors. Organic Electronics, 2020, 86, 105883.	1.4	8
192	Morphology evolution <i>via</i> solvent optimization enables all-polymer solar cells with improved efficiency and reduced voltage loss. Journal of Materials Chemistry C, 2022, 10, 6710-6716.	2.7	8
193	Tailoring π-conjugated dithienosilole–benzothiadiazole oligomers for organic solar cells. New Journal of Chemistry, 2015, 39, 3658-3664.	1.4	7
194	An Open ircuit Voltage and Power Conversion Efficiency Study of Fullerene Ternary Organic Solar Cells Based on Oligomer/Oligomer and Oligomer/Polymer. Macromolecular Rapid Communications, 2017, 38, 1700090.	2.0	7
195	An efficient blue emitter based on a naphthalene indenofluorene core. Organic Electronics, 2018, 55, 157-164.	1.4	7
196	Realizing efficient bipolar deep-blue light-emitting poly(2,7-carbazole) derivatives by suppressing intramolecular charge transfer. Organic Electronics, 2019, 67, 34-42.	1.4	7
197	Efficient binary white light-emitting polymers grafted with iridium complexes as side groups. RSC Advances, 2015, 5, 89888-89894.	1.7	6
198	Effect of Pyridyl Orientation on the Molecular Conformation and Self-Assembled Morphology of Regioisomeric Diketopyrrolopyrrole Derivatives. Journal of Physical Chemistry C, 2017, 121, 19305-19313.	1.5	6

#	Article	IF	CITATIONS
199	White polymer light-emitting diodes with ultra-large color shifts for pulse-width-modulation applications. Journal of Materials Chemistry C, 2019, 7, 10567-10573.	2.7	6
200	Efficient polyfluorene derivatives for blue light-emitting diodes enabled by tuning conjugation length of bulky chromophores. Dyes and Pigments, 2022, 199, 110059.	2.0	6
201	Amino-containing saturated red light-emitting copolymers based on fluorene and carbazole units. Dyes and Pigments, 2008, 78, 165-172.	2.0	5
202	Processing a pyridyl-based polymeric additive for improved photovoltaic performance of a wide-bandgap l€-conjugated polymer. Journal of Materials Chemistry C, 2016, 4, 8052-8060.	2.7	5
203	Efficient saturated red light-emitting polyfluorenes containing iridium complexes in side chains. New Journal of Chemistry, 2016, 40, 179-186.	1.4	5
204	Efficient Nonâ€Fullerene Organic Solar Cells Based on a Wideâ€Bandgap Polymer Donor Containing an Alkylthiophenyl‧ubstituted Benzodithiophene Moiety. ChemPhysChem, 2019, 20, 2668-2673.	1.0	5
205	Self-Assembly Polymorphism of Regioisomeric Diketopyrrolopyrrole-Based π-Conjugated Organic Semiconductors. Journal of Physical Chemistry C, 2019, 123, 1185-1193.	1.5	5
206	Overcoming efficiency loss of large-area all-polymer solar cells via asymmetric alkyl side-chain engineering of naphthalene diimide-based n-type polymer. Chemical Engineering Journal, 2022, 448, 137554.	6.6	5
207	Intermolecular H···Oâ•€ bonds induced 2D selfâ€assembly of thiophene based diketopyrrolopyrrole derivative. Surface and Interface Analysis, 2017, 49, 735-739.	0.8	4
208	Effects of a random copolymer's component distribution on its opto-electronic properties. Journal of Materials Chemistry C, 2017, 5, 6163-6168.	2.7	4
209	Novel electron transporting materials for highly efficient fully solution-processed green PhOLEDs with low rolls-off and drive voltage. Dyes and Pigments, 2018, 158, 20-27.	2.0	4
210	Efficient near-infrared anionic conjugated polyelectrolyte for photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 10609-10615.	2.9	4
211	Diethynylbenzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiopheneâ€based small molecule and crossâ€conjugated copolymers for organic solar cells. Journal of Polymer Science Part A, 2017, 55, 660-671.	2.5	3
212	Wide bandgap poly(<i>meta</i> -styrene) derivatives containing pendant carbazolyl groups as hosts for efficient solution-processed organic light emitting diodes. Polymer Chemistry, 2019, 10, 4449-4458.	1.9	3
213	Effect of alkyl side chain length on the electroluminescent performance of blue light-emitting poly(fluorene-co-dibenzothiophene-S,S-dioxide). Dyes and Pigments, 2021, 187, 109139.	2.0	3
214	Solution-processable bipolar S,S-dioxide-dibenzothiophene chromophores for single-layer organic light-emitting diodes. New Journal of Chemistry, 2016, 40, 7741-7749.	1.4	2
215	Highly efficient deep-blue light-emitting copolymers containing phenoxazine: enhanced device efficiency and lifetime by blending a hole transport molecule. Journal of Materials Chemistry C, 2019, 7, 13859-13866.	2.7	2
216	Efficient deepâ€blue lightâ€emitting polyfluorenes based on 9,9 â€dimethylâ€9 H â€thioxanthene 10,10â€dioxio isomers. Journal of Polymer Science, 2020, 58, 1380-1392.	de 2.0	2

#	Article	IF	CITATIONS
217	White-Emitting Polymers and Devices. Green Energy and Technology, 2010, , 37-78.	0.4	2
218	Pâ€224L: Lateâ€News Poster: Inkjetâ€printed Hyperbranched Polymer and Temperature Control of the Dewetting Phenomenon. Digest of Technical Papers SID International Symposium, 2017, 48, 1562-1564.	0.1	1
219	Polymer Solar Cells: Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63% (Adv. Sci. 9/2016). Advanced Science, 2016, 3, .	5.6	0
220	13.1: <i>Invited Paper:</i> Molecular Design of Efficient Blue Lightâ€Emitting Polymers based on Dibenzothiopheneâ€ <i>S</i> , <i>S</i> â€dioxide. Digest of Technical Papers SID International Symposium, 2021, 52, 183-183.	0.1	0