Miguel Ã, ngelo Parente Ribeiro Cerquei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/772533/publications.pdf Version: 2024-02-01

Miguel Ã, ngelo Parente

#	Article	IF	CITATIONS
1	Nanoemulsions for Food Applications: Development and Characterization. Food and Bioprocess Technology, 2012, 5, 854-867.	2.6	483
2	Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocolloids, 2012, 27, 175-184.	5.6	412
3	Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids, 2012, 27, 220-227.	5.6	389
4	Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 2013, 30, 110-122.	5.6	360
5	Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Applied Microbiology and Biotechnology, 2016, 100, 2141-2151.	1.7	334
6	Chitosan/clay films' properties as affected by biopolymer and clay micro/nanoparticles' concentrations. Food Hydrocolloids, 2009, 23, 1895-1902.	5.6	328
7	Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 2012, 27, 287-292.	5.6	324
8	Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiology and Molecular Biology Reviews, 2016, 80, 523-543.	2.9	310
9	Synergistic effects between \hat{l}^2 -carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 2012, 29, 280-289.	5.6	271
10	Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate Polymers, 2011, 85, 522-528.	5.1	216
11	Antimicrobial nanostructured starch based films for packaging. Carbohydrate Polymers, 2015, 129, 127-134.	5.1	215
12	Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydrate Polymers, 2011, 83, 179-185.	5.1	206
13	Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules, 2014, 71, 141-146.	3.6	195
14	Galactomannans use in the development of edible films/coatings for food applications. Trends in Food Science and Technology, 2011, 22, 662-671.	7.8	182
15	Edible oleogels: an opportunity for fat replacement in foods. Food and Function, 2018, 9, 758-773.	2.1	181
16	Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 2018, 81, 442-448.	5.6	180
17	Nanoemulsions of β-carotene using a high-energy emulsification–evaporation technique. Journal of Food Engineering, 2011, 102, 130-135.	2.7	174
18	Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 2019, 205, 106-116.	5.1	162

#	Article	IF	CITATIONS
19	Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 2015, 115, 1-9.	5.1	159
20	Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydrate Polymers, 2009, 75, 408-414.	5.1	153
21	Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International, 2018, 107, 84-92.	2.9	144
22	A Thermostable Salmonella Phage Endolysin, Lys68, with Broad Bactericidal Properties against Gram-Negative Pathogens in Presence of Weak Acids. PLoS ONE, 2014, 9, e108376.	1.1	143
23	Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. Journal of Virology, 2015, 89, 7449-7456.	1.5	142
24	Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydrate Polymers, 2015, 127, 347-354.	5.1	142
25	Effects of Electric Fields on Protein Unfolding and Aggregation: Influence on Edible Films Formation. Biomacromolecules, 2010, 11, 2912-2918.	2.6	137
26	Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 2011, 106, 111-118.	2.7	137
27	Shelf Life Extension of Ricotta Cheese Using Coatings of Galactomannans from Nonconventional Sources Incorporating Nisin against <i>Listeria monocytogenes</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 1884-1891.	2.4	135
28	Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 2018, 77, 8-16.	5.6	134
29	Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 2015, 167, 89-98.	2.7	131
30	Effect of Chitosan-Based Coatings on the Shelf Life of Salmon (Salmo salar). Journal of Agricultural and Food Chemistry, 2010, 58, 11456-11462.	2.4	130
31	Quercetin-Loaded Lecithin/Chitosan Nanoparticles for Functional Food Applications. Food and Bioprocess Technology, 2014, 7, 1149-1159.	2.6	129
32	Perspectives on Utilization of Edible Coatings and Nano-laminate Coatings for Extension of Postharvest Storage of Fruits and Vegetables. Food Engineering Reviews, 2016, 8, 292-305.	3.1	129
33	Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 2010, 82, 153-159.	5.1	119
34	Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Research International, 2016, 84, 170-179.	2.9	119
35	Structural and Enzymatic Characterization of ABgp46, a Novel Phage Endolysin with Broad Anti-Gram-Negative Bacterial Activity. Frontiers in Microbiology, 2016, 7, 208.	1.5	118
36	Functional Polysaccharides as Edible Coatings for Cheese. Journal of Agricultural and Food Chemistry, 2009, 57, 1456-1462.	2.4	112

#	Article	IF	CITATIONS
37	Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 2009, 94, 372-378.	2.7	111
38	Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydrate Polymers, 2013, 92, 2154-2162.	5.1	109
39	Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 594-614.	5.9	108
40	Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydrate Polymers, 2018, 192, 327-336.	5.1	108
41	Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnology, 2008, 8, 79.	1.7	107
42	Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering, 2016, 180, 110-119.	2.7	106
43	Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food and Chemical Toxicology, 2019, 134, 110814.	1.8	104
44	Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections. Frontiers in Microbiology, 2016, 7, 1024.	1.5	100
45	New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. Journal of Food Engineering, 2010, 97, 101-109.	2.7	99
46	Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Engineering Reviews, 2014, 6, 1-19.	3.1	99
47	Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Research International, 2019, 116, 1298-1305.	2.9	96
48	Oleogels for development of health-promoting food products. Food Science and Human Wellness, 2020, 9, 31-39.	2.2	96
49	Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnology, 2008, 8, 80.	1.7	94
50	Phage control of dual species biofilms of <i>Pseudomonas fluorescens</i> and <i>Staphylococcus lentus</i> . Biofouling, 2010, 26, 567-575.	0.8	93
51	Use of galactomannan edible coating application and storage temperature for prolonging shelf-life of "Regional―cheese. Journal of Food Engineering, 2010, 97, 87-94.	2.7	90
52	Physiological protection of probiotic microcapsules by coatings. Critical Reviews in Food Science and Nutrition, 2018, 58, 1864-1877.	5.4	89
53	Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. Journal of the Science of Food and Agriculture, 2020, 100, 218-224.	1.7	89
54	Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Research International, 2017, 96, 161-170.	2.9	87

#	Article	IF	CITATIONS
55	Fortified beeswax oleogels: effect of β-carotene on the gel structure and oxidative stability. Food and Function, 2017, 8, 4241-4250.	2.1	87
56	Antioxidant Potential of Two Red Seaweeds from the Brazilian Coasts. Journal of Agricultural and Food Chemistry, 2011, 59, 5589-5594.	2.4	86
57	Development and Characterization of an Active Chitosan-Based Film Containing Quercetin. Food and Bioprocess Technology, 2015, 8, 2183-2191.	2.6	85
58	Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L Journal of Food Engineering, 2009, 95, 379-385.	2.7	82
59	Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocolloids, 2010, 24, 330-335.	5.6	81
60	Physical Characterisation of an Alginate/Lysozyme Nano-Laminate Coating and Its Evaluation on †Coalho' Cheese Shelf Life. Food and Bioprocess Technology, 2014, 7, 1088-1098.	2.6	81
61	Ability of phages to infect <i>Acinetobacter calcoaceticusâ€Acinetobacter baumannii</i> complex species through acquisition of different pectate lyase depolymerase domains. Environmental Microbiology, 2017, 19, 5060-5077.	1.8	81
62	Effect of an Edible Nanomultilayer Coating by Electrostatic Self-Assembly on the Shelf Life of Fresh-Cut Mangoes. Food and Bioprocess Technology, 2015, 8, 647-654.	2.6	80
63	Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International Journal of Biological Macromolecules, 2018, 106, 647-655.	3.6	80
64	Strategy towards Replacing Pork Backfat with a Linseed Oleogel in Frankfurter Sausages and Its Evaluation on Physicochemical, Nutritional, and Sensory Characteristics. Foods, 2019, 8, 366.	1.9	80
65	Biocomposite Films Based on \hat{I}^2 -Carrageenan/Locust Bean Gum Blends and Clays: Physical and Antimicrobial Properties. Food and Bioprocess Technology, 2013, 6, 2081-2092.	2.6	75
66	Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. Journal of Food Engineering, 2019, 243, 89-100.	2.7	73
67	Use of wheat bran arabinoxylans in chitosan-based films: Effect on physicochemical properties. Industrial Crops and Products, 2015, 66, 305-311.	2.5	71
68	Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods, 2018, 48, 605-613.	1.6	70
69	Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 2019, 120, 656-667.	2.9	70
70	Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 2009, 23, 2110-2115.	5.6	67
71	Use of Electrospinning to Develop Antimicrobial Biodegradable Multilayer Systems: Encapsulation of Cinnamaldehyde and Their Physicochemical Characterization. Food and Bioprocess Technology, 2016, 9, 1874-1884.	2.6	65
72	Synergistic Antimicrobial Interaction between Honey and Phage against Escherichia coli Biofilms. Frontiers in Microbiology, 2017, 8, 2407.	1.5	64

#	Article	IF	CITATIONS
73	Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels, 2021, 7, 86.	2.1	63
74	The Use of Electric Fields for Edible Coatings and Films Development and Production: A Review. Food Engineering Reviews, 2010, 2, 244-255.	3.1	60
75	Chestnut Honey and Bacteriophage Application to Control Pseudomonas aeruginosa and Escherichia coli Biofilms: Evaluation in an ex vivo Wound Model. Frontiers in Microbiology, 2018, 9, 1725.	1.5	60
76	Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. Journal of General Virology, 2014, 95, 506-515.	1.3	59
77	Hollow chitosan/alginate nanocapsules for bioactive compound delivery. International Journal of Biological Macromolecules, 2015, 79, 95-102.	3.6	59
78	Development and characterization of lactoferrin-GMP nanohydrogels: Evaluation of pH, ionic strength and temperature effect. Food Hydrocolloids, 2015, 48, 292-300.	5.6	58
79	Nano spray drying of food ingredients; materials, processing and applications. Trends in Food Science and Technology, 2021, 109, 632-646.	7.8	58
80	Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels, 2020, 6, 17.	2.1	57
81	Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology, 2019, 291, 121-127.	2.1	56
82	Seed extracts of Gleditsia triacanthos: Functional properties evaluation and incorporation into galactomannan films. Food Research International, 2010, 43, 2031-2038.	2.9	55
83	Bacteriophages for Chronic Wound Treatment: From Traditional to Novel Delivery Systems. Viruses, 2020, 12, 235.	1.5	55
84	Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties. Journal of Food Engineering, 2020, 285, 110107.	2.7	55
85	Omegaâ€3 and Polyunsaturated Fatty Acidsâ€Enriched Hamburgers Using Sterolâ€Based Oleogels. European Journal of Lipid Science and Technology, 2019, 121, 1900111.	1.0	54
86	Relationship between galactomannan structure and physicochemical properties of films produced thereof. Journal of Food Science and Technology, 2015, 52, 8292-8299.	1.4	52
87	Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids, 2020, 108, 106013.	5.6	49
88	Influence of chitosan coating on protein-based nanohydrogels properties and inÂvitro gastric digestibility. Food Hydrocolloids, 2016, 60, 109-118.	5.6	48
89	Effects of Interactions between the Constituents of Chitosan-Edible Films on Their Physical Properties. Food and Bioprocess Technology, 2012, 5, 3181-3192.	2.6	47
90	Unexploited opportunities for phage therapy. Frontiers in Pharmacology, 2015, 6, 180.	1.6	46

#	Article	IF	CITATIONS
91	Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. International Journal of Biological Macromolecules, 2020, 163, 1798-1809.	3.6	46
92	Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose. Carbohydrate Polymers, 2017, 174, 1181-1191.	5.1	44
93	Sustainable approach of high-pressure agave bagasse pretreatment for ethanol production. Renewable Energy, 2020, 155, 1347-1354.	4.3	43
94	Layer-by-Layer Technique to Developing Functional Nanolaminate Films with Antifungal Activity. Food and Bioprocess Technology, 2016, 9, 471-480.	2.6	42
95	Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Research International, 2020, 128, 108791.	2.9	42
96	Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Engineering Reviews, 2015, 7, 491-513.	3.1	41
97	Sterolâ€based oleogels' characterization envisioning food applications. Journal of the Science of Food and Agriculture, 2019, 99, 3318-3325.	1.7	39
98	Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation. Food Chemistry, 2020, 314, 126157.	4.2	36
99	Lactoferrin-based nanoparticles as a vehicle for iron in food applications – Development and release profile. Food Research International, 2016, 90, 16-24.	2.9	34
100	Bacterial cellulose/cashew gum films as probiotic carriers. LWT - Food Science and Technology, 2020, 130, 109699.	2.5	34
101	Lactoferrin-based nanoemulsions to improve the physical and chemical stability of omega-3 fatty acids. Food and Function, 2020, 11, 1966-1981.	2.1	34
102	Multifunctional and nanoreinforced polymers for food packaging. , 2011, , .		34
103	Protein-Based Nanostructures for Food Applications. Gels, 2019, 5, 9.	2.1	33
104	Efficacy of a Broad Host Range Lytic Bacteriophage Against E. coli Adhered to Urothelium. Current Microbiology, 2011, 62, 1128-1132.	1.0	32
105	Thermodynamic, rheological and structural properties of edible oils structured with LMOGs: Influence of gelator and oil phase. Food Structure, 2018, 16, 50-58.	2.3	32
106	The role of bacteriophages in periodontal health and disease. Future Microbiology, 2016, 11, 1359-1369.	1.0	31
107	Compositional features and bioactive properties of whole fraction from Aloe vera processing. Industrial Crops and Products, 2016, 91, 179-185.	2.5	30
108	Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent <i>in situ</i> hybridization (LNA-FISH). Biofouling, 2016, 32, 179-190.	0.8	29

#	Article	IF	CITATIONS
109	Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. Nanomaterials, 2020, 10, 506.	1.9	29
110	Construction of a Biocompatible and Antioxidant Multilayer Coating by Layer-by-Layer Assembly of κ-Carrageenan and Quercetin Nanoparticles. Food and Bioprocess Technology, 2018, 11, 1050-1060.	2.6	27
111	Development of Active and Nanotechnology-based Smart Edible Packaging Systems: Physical–chemical Characterization. Food and Bioprocess Technology, 2014, 7, 1472-1482.	2.6	26
112	Nanotechnology in Food Packaging: Opportunities and Challenges. , 2018, , 1-11.		26
113	Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials, 2020, 10, 2356.	1.9	26
114	Safety and fate of nanomaterials in food: The role of in vitro tests. Trends in Food Science and Technology, 2021, 109, 593-607.	7.8	26
115	Immobilization of bioactive compounds in Cassia grandis galactomannan-based films: Influence on physicochemical properties. International Journal of Biological Macromolecules, 2017, 96, 727-735.	3.6	25
116	Otitis media pathogens – A life entrapped in biofilm communities. Critical Reviews in Microbiology, 2019, 45, 595-612.	2.7	25
117	Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Research International, 2016, 90, 25-32.	2.9	24
118	Bio-Based Nanoparticles as a Carrier of \hat{l}^2 -Carotene: Production, Characterisation and In Vitro Gastrointestinal Digestion. Molecules, 2020, 25, 4497.	1.7	24
119	Self-assembled lipids for food applications: A review. Advances in Colloid and Interface Science, 2020, 285, 102279.	7.0	23
120	Active Flexible Films for Food Packaging: A Review. Polymers, 2022, 14, 2442.	2.0	23
121	In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids, 2018, 84, 267-275.	5.6	22
122	Evaluation of the specific migration according to EU standards of titanium from Chitosan/Metal complexes films containing TiO2 particles into different food simulants. A comparative study of the nano-sized vs micro-sized particles. Food Packaging and Shelf Life, 2020, 26, 100579.	3.3	22
123	Food-grade hydroxypropyl methylcellulose-based formulations for electrohydrodynamic processing: Part I – Role of solution parameters on fibre and particle production. Food Hydrocolloids, 2021, 118, 106761.	5.6	22
124	Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes. Chemical Papers, 2010, 64, .	1.0	21
125	Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 – a unique member of the Siphoviridae family. Research in Microbiology, 2014, 165, 679-685.	1.0	21
126	Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. Food and Bioprocess Technology, 2015, 8, 1430-1441.	2.6	21

#	Article	IF	CITATIONS
127	The Protective Effect of Staphylococcus epidermidis Biofilm Matrix against Phage Predation. Viruses, 2020, 12, 1076.	1.5	21
128	All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packaging and Shelf Life, 2021, 29, 100715.	3.3	21
129	Rice bran protein-based films enriched by phenolic extract of fermented rice bran and montmorillonite clay. CYTA - Journal of Food, 2015, 13, 204-212.	0.9	20
130	Rhamnolipids-based nanostructured lipid carriers: Effect of lipid phase on physicochemical properties and stability. Food Chemistry, 2021, 344, 128670.	4.2	20
131	The clinical path to deliver encapsulated phages and lysins. FEMS Microbiology Reviews, 2021, 45, .	3.9	20
132	Effect of Biodegradable Hydrophilic and Hydrophobic Emulsifiers on the Oleogels Containing Sunflower Wax and Sunflower Oil. Gels, 2021, 7, 133.	2.1	20
133	Control of <i>Salmonella</i> Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling, 2018, 34, 753-768.	0.8	19
134	Active bi-layer cellulose-based films: development and characterization. Cellulose, 2018, 25, 6361-6375.	2.4	18
135	Candelilla Wax-Based Coatings and Films: Functional and Physicochemical Characterization. Food and Bioprocess Technology, 2019, 12, 1787-1797.	2.6	18
136	Micro and nanoencapsulation of bioactive compounds for agri-food applications: A review. Industrial Crops and Products, 2022, 186, 115198.	2.5	18
137	Advances in Food Nanotechnology. , 2017, , 11-38.		17
138	Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiology Ecology, 2018, 94, .	1.3	17
139	Characterization of PHBV films loaded with FO1 bacteriophage using polyvinyl alcohol-based nanofibers and coatings: A comparative study. Innovative Food Science and Emerging Technologies, 2021, 69, 102646.	2.7	17
140	Electrohydrodynamic processing for the production of zein-based microstructures and nanostructures. Current Opinion in Colloid and Interface Science, 2021, 56, 101504.	3.4	17
141	Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 2018, 25, 6011-6029.	2.4	16
142	Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. , 2018, , 271-306.		16
143	Dehydration of protein lactoferrin-glycomacropeptide nanohydrogels. Food Hydrocolloids, 2020, 101, 105550.	5.6	16
144	Delonix regia galactomannan-based edible films: Effect of molecular weight and k-carrageenan on physicochemical properties. Food Hydrocolloids, 2020, 103, 105632.	5.6	16

#	Article	IF	CITATIONS
145	Development and Evaluation of Superabsorbent Hydrogels Based on Natural Polymers. Polymers, 2020, 12, 2173.	2.0	16
146	Production and Extraction of Polysaccharides and Oligosaccharides and Their Use as New Food Additives. , 2015, , 653-679.		15
147	Polysaccharide-Based Multilayer Nano-Emulsions Loaded with Oregano Oil: Production, Characterization, and In Vitro Digestion Assessment. Nanomaterials, 2021, 11, 878.	1.9	15
148	Bacteriophage Attack as an Anti-biofilm Strategy. Methods in Molecular Biology, 2014, 1147, 277-285.	0.4	15
149	Wettability of edible coatings on Nile tilapia fillets (Oreochromis niloticus). Journal of Food Engineering, 2019, 247, 152-159.	2.7	14
150	Active and Intelligent Packaging for Milk and Milk Products. Contemporary Food Engineering, 2009, , 175-199.	0.2	13
151	Utilization of Galactomannan from Gleditsia triacanthos in Polysaccharide-Based Films: Effects of Interactions Between Film Constituents on Film Properties. Food and Bioprocess Technology, 2013, 6, 1600-1608.	2.6	13
152	Pectin-Based Films Loaded with Hydroponic Nopal Mucilages: Development and Physicochemical Characterization. Coatings, 2020, 10, 467.	1.2	13
153	Active Carboxymethylcellulose-Based Edible Films: Influence of Free and Encapsulated Curcumin on Films' Properties. Foods, 2021, 10, 1512.	1.9	13
154	Protein-based resins for food packaging. , 2011, , 610-648.		12
155	Natural and Induced Antibodies Against Phages in Humans: Induction Kinetics and Immunogenicity for Structural Proteins of PB1-Related Phages. Phage, 2020, 1, 91-99.	0.8	12
156	Gelation Behavior and Stability of Multicomponent Sterol-Based Oleogels. Gels, 2022, 8, 37.	2.1	12
157	Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A. Virology Journal, 2011, 8, 142.	1.4	11
158	Genome Sequence of the Broad-Host-Range Pseudomonas Phage Φ-S1. Journal of Virology, 2012, 86, 10239-10239.	1.5	11
159	The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications. Marine Drugs, 2021, 19, 384.	2.2	11
160	Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules, 2021, 26, 4378.	1.7	11
161	Lignocellulosic Materials and Their Use in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , .	0.1	10
162	Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. Food and Bioprocess Technology, 2020, 13, 67-87.	2.6	10

#	Article	IF	CITATIONS
163	Low energy nanoemulsions as carriers of thyme and lemon balm essential oils. LWT - Food Science and Technology, 2022, 154, 112748.	2.5	10
164	Carbon-based sputtered coatings for enhanced chitosan-based films properties. Applied Surface Science, 2018, 433, 689-695.	3.1	9
165	Isolation of Bacteriophages for Clinically Relevant Bacteria. Methods in Molecular Biology, 2018, 1693, 23-30.	0.4	9
166	Amphiphilic Modified Galactomannan as a Novel Potential Carrier for Hydrophobic Compounds. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	9
167	Development of an immobilization system for in situ micronutrients release. Food Research International, 2016, 90, 121-132.	2.9	8
168	Nanostructured Multilayer Films. , 2018, , 147-171.		8
169	Phenolic Compound–Loaded Nanosystems: Artificial Neural Network Modeling to Predict Particle Size, Polydispersity Index, and Encapsulation Efficiency. Food and Bioprocess Technology, 2019, 12, 1395-1408.	2.6	8
170	Management of Operational Parameters and Novel Spinneret Configurations for the Electrohydrodynamic Processing of Functional Polymers. Macromolecular Materials and Engineering, 2022, 307, .	1.7	8
171	Hydroxypropyl methylcellulose-based micro- and nanostructures for encapsulation of melanoidins: Effect of electrohydrodynamic processing variables on morphological and physicochemical properties. International Journal of Biological Macromolecules, 2022, 202, 453-467.	3.6	8
172	Does the Future of Food Pass by Using Nanotechnologies?. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	7
173	Antibiofilm Efficacy of the Pseudomonas aeruginosaÂPbunavirus vB_PaeM-SMS29 Loaded onto Dissolving Polyvinyl Alcohol Microneedles. Viruses, 2022, 14, 964.	1.5	7
174	Complete Genome Sequence of Pseudomonas aeruginosa Phage vB_PaeM_CEB_DP1. Genome Announcements, 2015, 3, .	0.8	6
175	Nanostructured biobased systems for nutrient and bioactive compounds delivery. , 2017, , 43-85.		6
176	Use of Lignocellulosic Materials in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , 65-85.	0.1	6
177	Lignocellulosic Materials: Sources and Processing Technologies. Springer Briefs in Molecular Science, 2018, , 13-33.	0.1	5
178	Graphene Oxide Increases Corneal Permeation of Ciprofloxacin Hydrochloride from Oleogels: A Study with Cocoa Butter-Based Oleogels. Gels, 2020, 6, 43.	2.1	5
179	Sustainable Biorefinery Processing for Hemicellulose Fractionation and Bio-based Products in a Circular Bioeconomy. Clean Energy Production Technologies, 2022, , 39-69.	0.3	4
180	Oleogels and Organogels: A Promising Tool for New Functionalities. Gels, 2022, 8, 349.	2.1	4

#	Article	IF	CITATIONS
181	Editorial: Antibiotic Alternatives and Combinational Therapies for Bacterial Infections. Frontiers in Microbiology, 2019, 9, 3359.	1.5	3
182	The Influence of P. fluorescens Cell Morphology on the Lytic Performance and Production of Phage ï•IBB-PF7A. Current Microbiology, 2011, 63, 347-353.	1.0	2
183	Techniques to Assess Phage–Biofilm Interaction. Methods in Molecular Biology, 2019, 1898, 137-146.	0.4	2
184	Editorial: Structured Edible Oil: Towards a New Generation of Fat Mimetics. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	2
185	Edible films and coatings as carriers of nano and microencapsulated ingredients. , 2021, , 211-273.		2
186	- Polypropylene and Polyethylene-Based Nanocomposites for Food Packaging Applications. , 2013, , 158-183.		2
187	Food Grade Polymers for the Gelation of Edible Oils Envisioning Food Applications. , 2018, , 591-608.		1
188	Processing, Production Methods and Characterization of Bio-Based Packaging Materials. Springer Briefs in Molecular Science, 2018, , 49-63.	0.1	1
189	Food Applications of Lignocellulosic-Based Packaging Materials. Springer Briefs in Molecular Science, 2018, , 87-94.	0.1	1
190	Conclusion and Future Trends. Springer Briefs in Molecular Science, 2018, , 95-97.	0.1	1
191	Extraction and characterization of mucilage from Opuntia ficus-indica cultivated on hydroponic system. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12460.	0.5	1
192	Zn and Zn-Fe Nanostructures with Multifunctional Properties as Components for Food Packaging Materials. Nanomaterials, 2022, 12, 2104.	1.9	0