## **Charles W M Roberts**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7724385/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Molecular Cell, 2022, 82, 2472-2489.e8.                | 4.5  | 18        |
| 2  | cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature, 2022, 607, 135-141.                                                                                            | 13.7 | 65        |
| 3  | A first-generation pediatric cancer dependency map. Nature Genetics, 2021, 53, 529-538.                                                                                                     | 9.4  | 76        |
| 4  | Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine. Clinical<br>Cancer Research, 2020, 26, 4995-5006.                                                     | 3.2  | 14        |
| 5  | The SWI/SNF complex in cancer — biology, biomarkers and therapy. Nature Reviews Clinical Oncology, 2020, 17, 435-448.                                                                       | 12.5 | 297       |
| 6  | Partitioning of Chemotherapeutics into Nuclear Condensates—Opening the Door to New Approaches<br>for Drug Development. Molecular Cell, 2020, 79, 544-545.                                   | 4.5  | 7         |
| 7  | Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in<br>Pediatric Rhabdoid Tumors. Cell Reports, 2019, 28, 2331-2344.e8.                         | 2.9  | 24        |
| 8  | BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nature Communications, 2019, 10, 1881.                                            | 5.8  | 117       |
| 9  | MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Research, 2019, 79, 2404-2414.                                                                           | 0.4  | 43        |
| 10 | p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer<br>Cell, 2019, 35, 204-220.e9.                                                             | 7.7  | 62        |
| 11 | Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging<br>Roles for SWI/SNF and Polycomb in Gene Regulation. Cancer Cell, 2019, 35, 95-110.e8. | 7.7  | 65        |
| 12 | High Frequency of Ovarian Cyst Development in Vhl;Snf5 Mice. American Journal of Pathology, 2018,<br>188, 1510-1516.                                                                        | 1.9  | 0         |
| 13 | TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Reports, 2018, 25, 1255-1267.e5.                                                                              | 2.9  | 46        |
| 14 | Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature, 2017, 542, 362-366.                                                                                   | 13.7 | 105       |
| 15 | The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nature Communications, 2017, 8, 14648.                                                 | 5.8  | 274       |
| 16 | PGBD5 promotes site-specific oncogenic mutations in human tumors. Nature Genetics, 2017, 49, 1005-1014.                                                                                     | 9.4  | 69        |
| 17 | ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nature Genetics, 2017, 49, 296-302.                                                                  | 9.4  | 260       |
| 18 | SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nature Genetics, 2017, 49, 289-295.                                                                         | 9.4  | 268       |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | AP-1 Transcription Factors and the BAF Complex Mediate Signal-Dependent Enhancer Selection.<br>Molecular Cell, 2017, 68, 1067-1082.e12.                                                                                        | 4.5  | 328       |
| 20 | Renal Medullary Carcinoma: Establishing Standards in Practice. Journal of Oncology Practice, 2017, 13, 414-421.                                                                                                                | 2.5  | 52        |
| 21 | Abstract LB-286: ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. , 2017, , .                                                                                                            |      | 1         |
| 22 | CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. Journal of Clinical Investigation, 2017, 128, 446-462.                                                                                           | 3.9  | 117       |
| 23 | Integrated genetic and pharmacologic interrogation of rare cancers. Nature Communications, 2016, 7, 11987.                                                                                                                     | 5.8  | 45        |
| 24 | Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 2016, 6, 914-929.                                                                                                    | 7.7  | 485       |
| 25 | Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors. JAMA Oncology, 2016, 2, 608.                                                                    | 3.4  | 172       |
| 26 | Atypical teratoid/rhabdoid tumors—current concepts, advances in biology, and potential future therapies. Neuro-Oncology, 2016, 18, 764-778.                                                                                    | 0.6  | 185       |
| 27 | Targeting EZH2 in cancer. Nature Medicine, 2016, 22, 128-134.                                                                                                                                                                  | 15.2 | 1,174     |
| 28 | Molecular analyses reveal close similarities between small cell carcinoma of the ovary,<br>hypercalcemic type and atypical teratoid/rhabdoid tumor. Oncotarget, 2016, 7, 1732-1740.                                            | 0.8  | 42        |
| 29 | Functionally distinct patterns of nucleosome remodeling at enhancers in glucocorticoid-treated acute lymphoblastic leukemia. Epigenetics and Chromatin, 2015, 8, 53.                                                           | 1.8  | 22        |
| 30 | Ezh2 regulates differentiation and function of natural killer cells through histone<br>methyltransferase activity. Proceedings of the National Academy of Sciences of the United States of<br>America, 2015, 112, 15988-15993. | 3.3  | 131       |
| 31 | Toward understanding and exploiting tumor heterogeneity. Nature Medicine, 2015, 21, 846-853.                                                                                                                                   | 15.2 | 604       |
| 32 | SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nature Medicine, 2015, 21, 1491-1496.                                                                                                           | 15.2 | 334       |
| 33 | Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5564-73.              | 3.3  | 355       |
| 34 | Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits<br>in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene, 2014, 33,<br>5295-5302.            | 2.6  | 132       |
| 35 | Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene, 2014, 33, 933-938.                                                                                                                  | 2.6  | 72        |
| 36 | Molecular Pathways: SWI/SNF (BAF) Complexes Are Frequently Mutated in Cancer—Mechanisms and<br>Potential Therapeutic Insights. Clinical Cancer Research, 2014, 20, 21-27.                                                      | 3.2  | 166       |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37  | ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nature Medicine, 2014, 20, 251-254.                                                                                                                                     | 15.2 | 336       |
| 38  | Residual Complexes Containing SMARCA2 (BRM) Underlie the Oncogenic Drive of <i>SMARCA4</i> ( <i>BRG1</i> ) Mutation. Molecular and Cellular Biology, 2014, 34, 1136-1144.                                                            | 1.1  | 176       |
| 39  | Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genetics, 2014, 207, 365-372.                                                                                                                                  | 0.2  | 119       |
| 40  | Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in<br>BRG1-deficient cancers. Proceedings of the National Academy of Sciences of the United States of<br>America, 2014, 111, 3128-3133. | 3.3  | 306       |
| 41  | Vulnerabilities of Mutant SWI/SNF Complexes in Cancer. Cancer Cell, 2014, 26, 309-317.                                                                                                                                               | 7.7  | 224       |
| 42  | CARMA: CARM1 Methylation of SWI/SNF in Breast Cancer. Cancer Cell, 2014, 25, 3-4.                                                                                                                                                    | 7.7  | 14        |
| 43  | Abstract A41: Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. , 2014, , .                                                                                                |      | 4         |
| 44  | Linking the SWI/SNF complex to prostate cancer. Nature Genetics, 2013, 45, 1268-1269.                                                                                                                                                | 9.4  | 137       |
| 45  | The SWI/SNF tumor suppressor complex. Nucleus, 2013, 4, 374-378.                                                                                                                                                                     | 0.6  | 54        |
| 46  | <i>ARID1A</i> Mutations in Cancer: Another Epigenetic Tumor Suppressor?. Cancer Discovery, 2013, 3, 35-43.                                                                                                                           | 7.7  | 347       |
| 47  | Rhabdoid Tumors: An Initial Clue to the Role of Chromatin Remodeling in Cancer. Brain Pathology, 2013, 23, 200-205.                                                                                                                  | 2.1  | 25        |
| 48  | Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499, 214-218.                                                                                                                       | 13.7 | 4,761     |
| 49  | CHD7 in Charge of Neurogenesis. Cell Stem Cell, 2013, 13, 1-2.                                                                                                                                                                       | 5.2  | 21        |
| 50  | Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10165-10170.                 | 3.3  | 174       |
| 51  | Establishment and characterization of MRT cell lines from genetically engineered mouse models and the influence of genetic background on their development. International Journal of Cancer, 2013, 132, 2767-2777.                   | 2.3  | 3         |
| 52  | Fibroblast Growth Factor Receptors as Novel Therapeutic Targets in SNF5-Deleted Malignant Rhabdoid<br>Tumors. PLoS ONE, 2013, 8, e77652.                                                                                             | 1.1  | 47        |
| 53  | Abstract SY07-01: The SWI/SNF chromatin remodeling complex is frequently mutated in cancer:<br>Mechanisms and potential therapeutic insights , 2013, , .                                                                             |      | 0         |
| - 4 | Cancer fighting Smurt Nature Medicine 2012 18 204 205                                                                                                                                                                                | 15.0 | 0         |

15.2 0

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Absence of oncogenic canonical pathway mutations in aggressive pediatric rhabdoid tumors. Pediatric<br>Blood and Cancer, 2012, 59, 1155-1157.                                                                                                        | 0.8  | 75        |
| 56 | Epigenetic inactivation of the tumor suppressor BIN1 drives proliferation of SNF5-deficient tumors.<br>Cell Cycle, 2012, 11, 1956-1965.                                                                                                              | 1.3  | 25        |
| 57 | A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. Journal of<br>Clinical Investigation, 2012, 122, 2983-2988.                                                                                                        | 3.9  | 347       |
| 58 | SWI/SNF nucleosome remodellers and cancer. Nature Reviews Cancer, 2011, 11, 481-492.                                                                                                                                                                 | 12.8 | 1,035     |
| 59 | TCR-dependent transformation of mature memory phenotype T cells in mice. Journal of Clinical Investigation, 2011, 121, 3834-3845.                                                                                                                    | 3.9  | 62        |
| 60 | Epigenetic Antagonism between Polycomb and SWI/SNF Complexes during Oncogenic Transformation.<br>Cancer Cell, 2010, 18, 316-328.                                                                                                                     | 7.7  | 531       |
| 61 | Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nature<br>Medicine, 2010, 16, 1429-1433.                                                                                                                 | 15.2 | 224       |
| 62 | SWI/SNF Deficiency Results in Aberrant Chromatin Organization, Mitotic Failure, and Diminished Proliferative Capacity. Molecular Biology of the Cell, 2009, 20, 3192-3199.                                                                           | 0.9  | 70        |
| 63 | Epigenetics and cancer without genomic instability. Cell Cycle, 2009, 8, 23-26.                                                                                                                                                                      | 1.3  | 43        |
| 64 | The role of SMARCB1/INI1 in the development of rhabdoid tumors. Cancer Biology and Therapy, 2009, 8, 412-416.                                                                                                                                        | 1.5  | 185       |
| 65 | Oncogenesis Caused by Loss of the SNF5 Tumor Suppressor Is Dependent on Activity of BRG1, the ATPase of the SWI/SNF Chromatin Remodeling Complex. Cancer Research, 2009, 69, 8094-8101.                                                              | 0.4  | 143       |
| 66 | Inactivation of SNF5 cooperates with p53 loss to accelerate tumor formation in<br><i>Snf5</i> <sup>+/â^'</sup> ; <i>p53</i> <sup>+/â^'</sup> mice. Molecular Carcinogenesis, 2009, 48,<br>1139-1148.                                                 | 1.3  | 23        |
| 67 | Loss of the Epigenetic Tumor Suppressor SNF5 Leads to Cancer without Genomic Instability. Molecular and Cellular Biology, 2008, 28, 6223-6233.                                                                                                       | 1.1  | 116       |
| 68 | Metagene projection for cross-platform, cross-species characterization of global transcriptional<br>states. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>5959-5964.                                | 3.3  | 126       |
| 69 | Tumor-Specific Cooperation of Retinoblastoma Protein Family and Snf5 Inactivation. Cancer Research, 2007, 67, 3002-3009.                                                                                                                             | 0.4  | 18        |
| 70 | Genetic causes of familial risk in rhabdoid tumors. Pediatric Blood and Cancer, 2006, 47, 235-237.                                                                                                                                                   | 0.8  | 3         |
| 71 | Epigenetics and Cancer: Altered Chromatin Remodeling via Snf5 Loss Leads to Aberrant Cell Cycle<br>Regulation. Cell Cycle, 2006, 5, 621-624.                                                                                                         | 1.3  | 58        |
| 72 | Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53<br>loss in oncogenic transformation. Proceedings of the National Academy of Sciences of the United<br>States of America, 2005, 102, 17745-17750. | 3.3  | 198       |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The SWI/SNF complex — chromatin and cancer. Nature Reviews Cancer, 2004, 4, 133-142.                                                                                                                                                                        | 12.8 | 551       |
| 74 | Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene<br>Snf5. Cancer Cell, 2002, 2, 415-425.                                                                                                                    | 7.7  | 303       |
| 75 | Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice.<br>Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13796-13800.                                            | 3.3  | 384       |
| 76 | On the Key Role of Secondary Lymphoid Organs in Antiviral Immune Responses Studied in<br>Alymphoplastic (aly/aly) and Spleenless (Hox11â~'/â~') Mutant Mice. Journal of Experimental Medicine, 1997,<br>185, 2157-2170.                                     | 4.2  | 187       |
| 77 | Hox11 controls the genesis of the spleen. Nature, 1994, 368, 747-749.                                                                                                                                                                                       | 13.7 | 254       |
| 78 | Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science, 1991, 253, 79-82.                                                                                                                                                      | 6.0  | 414       |
| 79 | The t(10;14)(q24;q11) of T-cell acute lymphoblastic leukemia juxtaposes the delta T-cell receptor with TCL3, a conserved and activated locus at 10q24 Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3161-3165. | 3.3  | 57        |