Alan D Griffiths

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7724382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constraining annual and seasonal radon-222 flux density from the Southern Ocean using radon-222 concentrations in the boundary layer at Cape Grim. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19622.	0.8	27
2	Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 30967.	0.8	43
3	Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study. Communications Earth & Environment, 2022, 3, .	2.6	24
4	IRIS analyser assessment reveals sub-hourly variability of isotope ratios in carbon dioxide at Baring Head, New Zealand's atmospheric observatory in the Southern Ocean. Atmospheric Measurement Techniques, 2022, 15, 1631-1656.	1.2	0
5	Rainfall Stable Water Isotope Variability in Coastal Southwestern Western Australia and Its Relationship to Climate on Multiple Timescales. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
6	Summer aerosol measurements over the East Antarctic seasonal ice zone. Atmospheric Chemistry and Physics, 2021, 21, 9497-9513.	1.9	6
7	Seasonal Variation of Biogenic and Anthropogenic VOCs in a Semi-Urban Area Near Sydney, Australia. Atmosphere, 2021, 12, 47.	1.0	8
8	Modern speleothem oxygen isotope hydroclimate records in water-limited SE Australia. Geochimica Et Cosmochimica Acta, 2020, 270, 431-448.	1.6	10
9	A 35Âka record of groundwater recharge in south-west Australia using stable water isotopes. Science of the Total Environment, 2020, 717, 135105.	3.9	13
10	Composition of Clean Marine Air and Biogenic Influences on VOCs during the MUMBA Campaign. Atmosphere, 2019, 10, 383.	1.0	8
11	Evaluation of Regional Air Quality Models over Sydney and Australia: Part 1—Meteorological Model Comparison. Atmosphere, 2019, 10, 374.	1.0	17
12	Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222. Atmosphere, 2019, 10, 25.	1.0	28
13	A Clean Air Plan for Sydney: An Overview of the Special Issue on Air Quality in New South Wales. Atmosphere, 2019, 10, 774.	1.0	29
14	Characterizing the State of the Urban Surface Layer Using Radonâ€⊋22. Journal of Geophysical Research D: Atmospheres, 2019, 124, 770-788.	1.2	26
15	Comprehensive aerosol and gas data set from the Sydney Particle Study. Earth System Science Data, 2019, 11, 1883-1903.	3.7	5
16	Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere, 2018, 9, 500.	1.0	22
17	Hot Summers: Effect of Extreme Temperatures on Ozone in Sydney, Australia. Atmosphere, 2018, 9, 466.	1.0	25
18	Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222. Frontiers in Earth Science, 2018, 6, .	0.8	37

ALAN D GRIFFITHS

#	Article	IF	CITATIONS
19	Statistical analysis of Seoul air quality to assess the efficacy of emission abatement strategies since 1987. Science of the Total Environment, 2017, 580, 105-116.	3.9	12
20	Atmospheric mercury in the Southern Hemisphere tropics: seasonal and diurnal variations and influence of inter-hemispheric transport. Atmospheric Chemistry and Physics, 2017, 17, 11623-11636.	1.9	36
21	Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radonâ€222 and Back Trajectories. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,525.	1.2	5
22	Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment. Hydrology and Earth System Sciences, 2017, 21, 533-548.	1.9	19
23	Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia's arid margin interpreted from speleothem records (23–15†ka). Climate of the Past, 2017, 13, 667-687.	1.3	56
24	Impact of Atmospheric Flow Conditions on Fine Aerosols in Sydney, Australia. Aerosol and Air Quality Research, 2017, 17, 1746-1759.	0.9	11
25	The MUMBA campaign: measurements of urban, marine and biogenic air. Earth System Science Data, 2017, 9, 349-362.	3.7	24
26	Increasing the accuracy and temporal resolution of two-filter radon–222 measurements by correcting for the instrument response. Atmospheric Measurement Techniques, 2016, 9, 2689-2707.	1.2	22
27	Impact of meteorology on fine aerosols at Lucas Heights, Australia. Atmospheric Environment, 2016, 145, 135-146.	1.9	17
28	Quantifying stability influences on air pollution in Lanzhou, China, using a radon-based "stability monitor― Seasonality and extreme events. Atmospheric Environment, 2016, 145, 376-391.	1.9	29
29	Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. Journal of Environmental Radioactivity, 2016, 154, 68-82.	0.9	22
30	Assessing the impact of atmospheric stability on locally and remotely sourced aerosols at Richmond, Australia, using Radon-222. Atmospheric Environment, 2016, 127, 107-117.	1.9	24
31	Particulate Pollution in the Sydney Region: Source Diagnostics and Synoptic Controls. Aerosol and Air Quality Research, 2016, 16, 1055-1066.	0.9	13
32	Towards a Universal "Baseline―Characterisation of Air Masses for High- and Low-Altitude Observing Stations Using Radon-222. Aerosol and Air Quality Research, 2016, 16, 885-899.	0.9	42
33	Improving the Representation of Cross-Boundary Transport of Anthropogenic Pollution in East Asia Using Radon-222. Aerosol and Air Quality Research, 2016, 16, 958-976.	0.9	14
34	Analysis of a decade of Asian outflow of PM10 and TSP to Gosan, Korea; also incorporating Radon–222. Atmospheric Pollution Research, 2015, 6, 529-539.	1.8	9
35	On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmospheric Chemistry and Physics, 2015, 15, 1175-1190.	1.9	80
36	Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements. Journal of Hydrology, 2015, 523, 67-78.	2.3	14

ALAN D GRIFFITHS

#	Article	IF	CITATIONS
37	Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmospheric Environment, 2015, 107, 233-243.	1.9	54
38	Evaporation and concentration gradients created by episodic river recharge in a semi-arid zone aquifer: Insights from Clâ^, Î180, Î2H, and 3H. Journal of Hydrology, 2015, 529, 1070-1078.	2.3	25
39	Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia. Quaternary Science Reviews, 2015, 127, 61-72.	1.4	52
40	Using Radon-222 as an Indicator of Atmospheric Mixing Depth in ME-2 for PM2.5 Source Apportionment. Aerosol and Air Quality Research, 2015, 15, 611-624.	0.9	7
41	Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch. Atmospheric Chemistry and Physics, 2014, 14, 12763-12779.	1.9	45
42	Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmospheric Chemistry and Physics, 2014, 14, 9903-9916.	1.9	59
43	Bulk Mixing and Decoupling of the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous Natural Tracer. Boundary-Layer Meteorology, 2013, 149, 381-402.	1.2	71
44	Improved mixing height monitoring through a combination of lidar and radon measurements. Atmospheric Measurement Techniques, 2013, 6, 207-218.	1.2	46
45	Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon‣22 and back trajectories. Journal of Geophysical Research D: Atmospheres, 2013, 118, 992-1004.	1.2	30
46	The Vertical Distribution of Radon in Clear and Cloudy Daytime Terrestrial Boundary Layers. Journals of the Atmospheric Sciences, 2011, 68, 155-174.	0.6	76
47	Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions. Atmospheric Chemistry and Physics, 2011, 11, 7817-7838.	1.9	73
48	A map of radon flux at the Australian land surface. Atmospheric Chemistry and Physics, 2010, 10, 8969-8982.	1.9	78
49	Simulations of separated flow over two-dimensional hills. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98, 155-160.	1.7	23
50	Diode laser absorption spectroscopy of water vapor in a scramjet combustor. Applied Optics, 2005, 44, 6653.	2.1	42
51	Portable two-filter dual-flow-loop ²²² Rn detector: stand-alone monitor and calibration transfer device. Advances in Geosciences. 0, 57 <u>. 63-80</u> .	12.0	2