
Lars G M Pettersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7723801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulations of x-ray absorption spectra for CO desorbing from Ru(0001) with transition-potential and time-dependent density functional theory approaches. Structural Dynamics, 2022, 9, 014101.	0.9	1
2	Hydrogen Evolution Linked to Selective Oxidation of Glycerol over CoMoO ₄ —A Theoretically Predicted Catalyst. Advanced Energy Materials, 2022, 12, .	10.2	37
3	The local structure of water from combining diffraction and X-ray spectroscopy. Journal of Non-Crystalline Solids: X, 2022, 14, 100087.	0.5	3
4	In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer–Tropsch Synthesis. ACS Catalysis, 2022, 12, 7609-7621.	5.5	13
5	Selectivity of the First Two Glycerol Dehydrogenation Steps Determined Using Scaling Relationships. ACS Catalysis, 2021, 11, 3487-3497.	5.5	19
6	Properties of interfaces between copper and copper sulphide/oxide films. Corrosion Science, 2021, 183, 109313.	3.0	9
7	Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO <i>_x</i> /Pt Catalyst. Small, 2021, 17, e2104288.	5.2	63
8	X-ray emission spectroscopy: a genetic algorithm to disentangle core–hole-induced dynamics. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	6
9	Time-resolved observation of transient precursor state of CO on Ru(0001) using carbon K-edge spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 2677-2684.	1.3	15
10	Electrochemical Interface during Corrosion of Copper in Anoxic Sulfide-Containing Groundwater—A Computational Study. Journal of Physical Chemistry C, 2020, 124, 469-481.	1.5	8
11	Photodriven CO dimerization on Cu ₂ O from an electronic-structure perspective. Sustainable Energy and Fuels, 2020, 4, 670-677.	2.5	0
12	Uncovering the electrochemical interface of low-index copper surfaces in deep groundwater environments. Electrochimica Acta, 2020, 362, 137111.	2.6	5
13	Elucidating the role of Ni to enhance the methanol oxidation reaction on Pd electrocatalysts. Electrochimica Acta, 2020, 360, 136954.	2.6	34
14	Partial Electrooxidation of Glycerol on Close-Packed Transition Metal Surfaces: Insights from First-Principles Calculations. Journal of Physical Chemistry C, 2020, 124, 17907-17915.	1.5	13
15	Some useful correlations for H-bonded systems. Molecular Crystals and Liquid Crystals, 2020, 696, 15-28.	0.4	6
16	Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2020, 142, 14481-14494.	6.6	25
17	Accurate SCC-DFTB Parametrization for Bulk Water. Journal of Chemical Theory and Computation, 2020, 16, 1768-1778.	2.3	17
18	Accuracy of XAS theory for unraveling structural changes of adsorbates: CO on Ni(100). AIP Advances, 2020, 10, 115014.	0.6	6

#	Article	IF	CITATIONS
19	A proposal for the structure of high- and low-density fluctuations in liquid water. Journal of Chemical Physics, 2019, 151, 034508.	1.2	39
20	Radial distribution functions of water: Models vs experiments. Journal of Chemical Physics, 2019, 151, 044502.	1.2	25
21	Liquid water structure from X-ray absorption and emission, NMR shielding and X-ray diffraction. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	5
22	Translational and rotational dynamics of high and low density TIP4P/2005 water. Journal of Chemical Physics, 2019, 150, 224507.	1.2	20
23	On the Nature of the Cathodic Reaction during Corrosion of Copper in Anoxic Sulfide Solutions. Journal of the Electrochemical Society, 2019, 166, C196-C208.	1.3	6
24	Do X-ray spectroscopies provide evidence for continuous distribution models of water at ambient conditions?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17156-17157.	3.3	16
25	X-ray absorption spectrum simulations of hexagonal ice. Journal of Chemical Physics, 2019, 150, 034501.	1.2	13
26	A Two-State Picture of Water and the Funnel of Life. Springer Proceedings in Physics, 2019, , 3-39.	0.1	8
27	Amorphous, Periodic Model of a Copper Electrocatalyst with Subsurface Oxygen for Enhanced CO Coverage and Dimerization. Journal of Physical Chemistry C, 2019, 123, 4961-4968.	1.5	13
28	Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water. Journal of Chemical Physics, 2018, 148, 144507.	1.2	37
29	A Chemical View on Xâ€ray Photoelectron Spectroscopy: the ESCA Molecule and Surfaceâ€toâ€Bulk XPS Shifts. ChemPhysChem, 2018, 19, 169-174.	1.0	24
30	Atom-specific activation in CO oxidation. Journal of Chemical Physics, 2018, 149, 234707.	1.2	2
31	Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nature Communications, 2018, 9, 1917.	5.8	59
32	Spin Uncoupling in Chemisorbed OCCO and CO ₂ : Two High-Energy Intermediates in Catalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2018, 122, 12251-12258.	1.5	22
33	X-ray Absorption Near-Edge Spectroscopy Calculations on Pristine and Modified Chalcopyrite Surfaces. Journal of Physical Chemistry C, 2018, 122, 20200-20209.	1.5	8
34	Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 172, 83-90.	2.0	13
35	MP4 Study of the Anharmonic Coupling of the Shared Proton Stretching Vibration of the Protonated Water Dimer in Equilibrium and Transition States. Journal of Physical Chemistry A, 2017, 121, 2151-2165.	1.1	8
36	Core-hole-induced dynamical effects in the x-ray emission spectrum of liquid methanol. Journal of Chemical Physics, 2017, 146, 134506.	1.2	18

#	Article	IF	CITATIONS
37	Calculation of the vibration–rotational transition intensities of water molecules trapped in an argon matrix: stretching O–H vibrations spectral region. Molecular Physics, 2017, 115, 2605-2613.	0.8	10
38	Stability, Structure, and Electronic Properties of the Pyrite/Arsenopyrite Solid–Solid Interface–A DFT Study. Journal of Physical Chemistry C, 2017, 121, 8042-8051.	1.5	34
39	Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction. Journal of Physical Chemistry Letters, 2017, 8, 285-290.	2.1	332
40	Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25010-25017.	1.5	92
41	Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25003-25009.	1.5	98
42	How square ice helps lubrication. Physical Review B, 2017, 95, .	1.1	12
43	Real-Time Elucidation of Catalytic Pathways in CO Hydrogenation on Ru. Journal of Physical Chemistry Letters, 2017, 8, 3820-3825.	2.1	9
44	Temperature-Independent Nuclear Quantum Effects on the Structure of Water. Physical Review Letters, 2017, 119, 075502.	2.9	26
45	Probing the OH Stretch in Different Local Environments in Liquid Water. Journal of Physical Chemistry Letters, 2017, 8, 5487-5491.	2.1	30
46	Diffusive dynamics during the high-to-low density transition in amorphous ice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8193-8198.	3.3	155
47	X-ray Emission Spectrum of Liquid Ethanol: Origin of Split Peaks. Journal of Physical Chemistry B, 2017, 121, 11163-11168.	1.2	15
48	Water—The Most Anomalous Liquid. Chemical Reviews, 2016, 116, 7459-7462.	23.0	124
49	Water: A Tale of Two Liquids. Chemical Reviews, 2016, 116, 7463-7500.	23.0	627
50	Combinatorial Broadening Mechanism of O–H Stretching Bands in H-Bonded Molecular Clusters. Journal of Applied Spectroscopy, 2016, 83, 350-357.	0.3	4
51	The structural validity of various thermodynamical models of supercooled water. Journal of Chemical Physics, 2016, 145, 134507.	1.2	41
52	Evaporative cooling of microscopic water droplets <i>in vacuo</i> : Molecular dynamics simulations and kinetic gas theory. Journal of Chemical Physics, 2016, 144, 124502.	1.2	22
53	The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water. Journal of Chemical Physics, 2016, 145, 084503.	1.2	33
54	Structural Changes in RuO ₂ during Electrochemical Hydrogen Evolution. Journal of Physical Chemistry C, 2016, 120, 7094-7102.	1.5	19

#	Article	IF	CITATIONS
55	Chemical Bond Activation Observed with an X-ray Laser. Journal of Physical Chemistry Letters, 2016, 7, 3647-3651.	2.1	21
56	X-ray and Electron Spectroscopy of Water. Chemical Reviews, 2016, 116, 7551-7569.	23.0	143
57	Probing water with X-ray lasers. Advances in Physics: X, 2016, 1, 226-245.	1.5	8
58	Structural transformations in bulk and matrix-isolated methanol from measured and computed infrared spectroscopy. Journal of Molecular Liquids, 2016, 216, 53-58.	2.3	17
59	Requirements of first-principles calculations of X-ray absorption spectra of liquid water. Physical Chemistry Chemical Physics, 2016, 18, 566-583.	1.3	30
60	Indication of non-thermal contribution to visible femtosecond laser-induced CO oxidation on Ru(0001). Journal of Chemical Physics, 2015, 143, 074701.	1.2	14
61	Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state. Surface Science, 2015, 640, 80-88.	0.8	13
62	The structural origin of anomalous properties of liquid water. Nature Communications, 2015, 6, 8998.	5.8	373
63	Probing the transition state region in catalytic CO oxidation on Ru. Science, 2015, 347, 978-982.	6.0	193
64	Detection of adsorbate overlayer structural transitions using sum-frequency generation spectroscopy. Surface Science, 2015, 633, 77-81.	0.8	3
65	Long-range ion–water and ion–ion interactions in aqueous solutions. Physical Chemistry Chemical Physics, 2015, 17, 8427-8430.	1.3	15
66	Theoretical study of the X-ray natural circular dichroism of some crystalline amino acids. Chemical Physics, 2015, 450-451, 109-114.	0.9	12
67	Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land― Journal of Physical Chemistry Letters, 2015, 6, 2826-2832.	2.1	102
68	Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy andAbÂlnitioSimulations. Physical Review Letters, 2015, 114, 156101.	2.9	25
69	Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. Frontiers in Chemistry, 2015, 3, 2.	1.8	32
70	The electrocatalytic properties of doped TiO2. Electrochimica Acta, 2015, 180, 514-527.	2.6	34
71	X-ray emission spectroscopy of bulk liquid water in "no-man's land― Journal of Chemical Physics, 2015, 142, 044505.	1.2	32
72	The structure of water; from ambient to deeply supercooled. Journal of Non-Crystalline Solids, 2015, 407, 399-417.	1.5	51

#	Article	IF	CITATIONS
73	Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section. Journal of Chemical Physics, 2014, 141, 034507.	1.2	60
74	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	1.5	87
75	Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences. Physical Review Letters, 2014, 113, 153002.	2.9	33
76	A Molecular Perspective on the d-Band Model: Synergy Between Experiment and Theory. Topics in Catalysis, 2014, 57, 2-13.	1.3	90
77	Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution. Electrochimica Acta, 2014, 146, 733-740.	2.6	44
78	Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature, 2014, 510, 381-384.	13.7	385
79	A different view of structure-making and structure-breaking in alkali halide aqueous solutions through x-ray absorption spectroscopy. Journal of Chemical Physics, 2014, 140, 244506.	1.2	70
80	Highly Compressed Two-Dimensional Form of Water at Ambient Conditions. Scientific Reports, 2013, 3, 1074.	1.6	31
81	Stability of Pt-Modified Cu(111) in the Presence of Oxygen and Its Implication on the Overall Electronic Structure. Journal of Physical Chemistry C, 2013, 117, 16371-16380.	1.5	5
82	Resonant inelastic X-ray scattering of liquid water. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 84-100.	0.8	45
83	Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide <i>Q</i> -range. Journal of Chemical Physics, 2013, 138, 074506.	1.2	407
84	Real-Time Observation of Surface Bond Breaking with an X-ray Laser. Science, 2013, 339, 1302-1305.	6.0	179
85	Radical water. Nature Chemistry, 2013, 5, 553-554.	6.6	5
86	Solvation structures of protons and hydroxide ions in water. Journal of Chemical Physics, 2013, 138, 154506.	1.2	19
87	The Boson peak in supercooled water. Scientific Reports, 2013, 3, 1980.	1.6	47
88	Unique water-water coordination tailored by a metal surface. Journal of Chemical Physics, 2013, 138, 234708.	1.2	1
89	Selective Probing of the OH or OD Stretch Vibration in Liquid Water Using Resonant Inelastic Soft-X-Ray Scattering. Physical Review Letters, 2013, 111, 193001.	2.9	90
90	Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001). Physical Review Letters, 2013, 110, 186101.	2.9	51

#	Article	IF	CITATIONS
91	Microscopic probing of the size dependence in hydrophobic solvation. Journal of Chemical Physics, 2012, 136, 074507.	1.2	30
92	X-ray emission spectroscopy and density functional study of CO/Fe(100). Journal of Chemical Physics, 2012, 136, 034702.	1.2	21
93	Polarization dependent resonant x-ray emission spectroscopy of D2O and H2O water: Assignment of the local molecular orbital symmetry. Journal of Chemical Physics, 2012, 136, 044517.	1.2	42
94	Fluctuations in ambient water. Journal of Molecular Liquids, 2012, 176, 2-16.	2.3	86
95	Adsorption and Cyclotrimerization Kinetics of C ₂ H ₂ at a Cu(110) Surface. Journal of Physical Chemistry C, 2012, 116, 9550-9560.	1.5	20
96	Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Letters, 2012, 12, 4025-4031.	4.5	471
97	In situ X-ray probing reveals fingerprints of surface platinum oxide. Physical Chemistry Chemical Physics, 2011, 13, 262-266.	1.3	110
98	Spatially inhomogeneous bimodal inherent structure of simulated liquid water. Physical Chemistry Chemical Physics, 2011, 13, 19918.	1.3	136
99	Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water. Journal of Chemical Physics, 2011, 134, 214506.	1.2	67
100	Ab Initio van der Waals Interactions in Simulations of Water Alter Structure from Mainly Tetrahedral to High-Density-Like. Journal of Physical Chemistry B, 2011, 115, 14149-14160.	1.2	83
101	Wide-angle X-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water. Physical Chemistry Chemical Physics, 2011, 13, 19997.	1.3	63
102	The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. Journal of Chemical Physics, 2011, 134, 064513.	1.2	111
103	Increased fraction of low-density structures in aqueous solutions of fluoride. Journal of Chemical Physics, 2011, 134, 224507.	1.2	18
104	An implementation of core level spectroscopies in a real space Projector Augmented Wave density functional theory code. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 427-439.	0.8	61
105	Perspective on the structure of liquid water. Chemical Physics, 2011, 389, 1-34.	0.9	289
106	Evidence for Fe ²⁺ in Wurtzite Coordination: Iron Doping Stabilizes ZnO Nanoparticles. Small, 2011, 7, 2879-2886.	5.2	44
107	Doped Nanoparticles: Evidence for Fe2+ in Wurtzite Coordination: Iron Doping Stabilizes ZnO Nanoparticles (Small 20/2011). Small, 2011, 7, 2878-2878.	5.2	1
108	Oxidation of Pt(111) under Near-Ambient Conditions. Physical Review Letters, 2011, 107, 195502.	2.9	151

#	Article	IF	CITATIONS
109	Vibrational interference effects in x-ray emission of a model water dimer: Implications for the interpretation of the liquid spectrum. Journal of Chemical Physics, 2011, 134, 044513.	1.2	46
110	X-ray Raman scattering provides evidence for interfacial acetonitrile-water dipole interactions in aqueous solutions. Journal of Chemical Physics, 2011, 135, 164509.	1.2	19
111	Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 135-157.	0.8	132
112	X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 99-129.	0.8	158
113	High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 192-205.	0.8	100
114	Chemical bonding of water to metal surfaces studied with core-level spectroscopies. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 85-98.	0.8	55
115	Semiclassical description of nuclear dynamics in x-ray emission of water. Physical Review B, 2010, 82, .	1.1	34
116	Reply to Soper et al.: Fluctuations in water around a bimodal distribution of local hydrogen-bonded structural motifs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	3.3	44
117	Oxygen-oxygen correlations in liquid water: Addressing the discrepancy between diffraction and extended x-ray absorption fine-structure using a novel multiple-data set fitting technique. Journal of Chemical Physics, 2010, 132, 104513.	1.2	37
118	The role of substrate electrons in the wetting of a metal surface. Journal of Chemical Physics, 2010, 132, 094701.	1.2	39
119	SpecSwap-RMC: a novel reverse Monte Carlo approach using a discrete set of local configurations and pre-computed properties. Journal of Physics Condensed Matter, 2010, 22, 135001.	0.7	12
120	Functional Groups and Sulfur K-Edge XANES Spectra: Divalent Sulfur and Disulfides. Journal of Physical Chemistry A, 2010, 114, 9523-9528.	1.1	20
121	Low O2 dissociation barrier on Pt(111) due to adsorbate–adsorbate interactions. Journal of Chemical Physics, 2010, 133, 224701.	1.2	49
122	Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering. Journal of Chemical Physics, 2010, 133, 134504.	1.2	84
123	Chemical Bonding on Metal Surfaces. , 2010, , 253-274.		3
124	Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces. Journal of Physical Chemistry C, 2010, 114, 10240-10248.	1.5	51
125	Sulfur-Metal Orbital Hybridization in Sulfur-Bearing Compounds Studied by X-ray Emission Spectroscopy. Inorganic Chemistry, 2010, 49, 6468-6473.	1.9	56
126	Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts. Physical Chemistry Chemical Physics, 2010, 12, 5694.	1.3	23

#	Article	IF	CITATIONS
127	Sensitivity of x-ray absorption spectroscopy to hydrogen bond topology. Physical Review B, 2009, 80, .	1.1	37
128	Assessing the electric-field approximation to IR and Raman spectra of dilute HOD in D2O. Journal of Chemical Physics, 2009, 131, 034501.	1.2	11
129	Increased fraction of weakened hydrogen bonds of water in aerosol OT reverse micelles. Journal of Chemical Physics, 2009, 131, 031103.	1.2	19
130	The inhomogeneous structure of water at ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15214-15218.	3.3	526
131	The Interpretation of Sulfur K-Edge XANES Spectra: A Case Study on Thiophenic and Aliphatic Sulfur Compounds. Journal of Physical Chemistry A, 2009, 113, 2750-2756.	1.1	38
132	Electronic Structure of Sulfur Studied by X-ray Absorption and Emission Spectroscopy. Analytical Chemistry, 2009, 81, 6516-6525.	3.2	93
133	On the Range of Water Structure Models Compatible with X-ray and Neutron Diffraction Data. Journal of Physical Chemistry B, 2009, 113, 6246-6255.	1.2	81
134	Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide. Dalton Transactions, 2009, , 3542.	1.6	40
135	High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs. Chemical Physics Letters, 2008, 460, 387-400.	1.2	328
136	Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory. Chemical Physics Letters, 2008, 460, 86-92.	1.2	61
137	Spectroscopic evidence for the formation of 3-D crystallites during isothermal heating of amorphous ice on Pt(111). Surface Science, 2008, 602, 2004-2008.	0.8	15
138	Autocatalytic Water Dissociation on Cu(110) at Near Ambient Conditions. Journal of the American Chemical Society, 2008, 130, 2793-2797.	6.6	126
139	The structure of mixed H2O–OH monolayer films on Ru(0001). Journal of Chemical Physics, 2008, 129, 154109.	1.2	50
140	Diffraction and IR/Raman data do not prove tetrahedral water. Journal of Chemical Physics, 2008, 129, 084502.	1.2	94
141	Adsorbate Electronic Structure and Bonding on Metal Surfaces. , 2008, , 57-142.		32
142	Comment on "lsotope and Temperature Effects in Liquid Water Probed by X-Ray Absorption and Resonant X-Ray Emission Spectroscopy― Physical Review Letters, 2008, 100, 249801; author reply 249802.	2.9	40
143	Geometric and electronic structure of methane adsorbed on a Pt surface. Journal of Chemical Physics, 2007, 127, 144702.	1.2	21
144	Isotope effects in liquid water probed by x-ray Raman spectroscopy. Physical Review B, 2007, 76, .	1.1	72

#	Article	IF	CITATIONS
145	Probing the Electron Delocalization in Liquid Water and Ice at Attosecond Time Scales. Physical Review Letters, 2007, 99, 217406.	2.9	117
146	Sulfur X-ray Absorption and Vibrational Spectroscopic Study of Sulfur Dioxide, Sulfite, and Sulfonate Solutions and of the Substituted Sulfonate Ions X ₃ CSO ₃ ⁻ (X = H,) Tj ETQ4	q01090 rgB	T /Ø verlock 1

147	Bridging the Pressure Gap in Water and Hydroxyl Chemistry on Metal Surfaces:  The Cu(110) Case. Journal of Physical Chemistry C, 2007, 111, 14493-14499.	1.5	68
148	Hydroxyl-Induced Wetting of Metals by Water at Near-Ambient Conditions. Journal of Physical Chemistry C, 2007, 111, 7848-7850.	1.5	138
149	Structure and Bonding of the Waterâ^'Hydroxyl Mixed Phase on Pt(111). Journal of Physical Chemistry C, 2007, 111, 15003-15012.	1.5	117
150	Are recent water models obtained by fitting diffraction data consistent with infrared/Raman and x-ray absorption spectra?. Journal of Chemical Physics, 2006, 125, 244510.	1.2	60
151	Bonding in metal–carbonyls: A comparison with experiment and calculations on adsorbed CO. Computational and Theoretical Chemistry, 2006, 762, 123-132.	1.5	20
152	Intra- and intermolecular effects in the Compton profile of water. Physical Review B, 2006, 73, .	1.1	44
153	The local structure of protonated water from x-ray absorption and density functional theory. Journal of Chemical Physics, 2006, 124, 194508.	1.2	49
154	Structure of water adsorbed on the open Cu(110) surface: H-up, H-down, or both?. Chemical Physics Letters, 2006, 429, 415-419.	1.2	82
155	Physisorption-Induced C-H Bond Elongation in Methane. Physical Review Letters, 2006, 96, 146104.	2.9	34
156	Fluorescence Emission of Excited Hydrogen Atoms after Core Excitation of Water Vapor. Physical Review Letters, 2006, 96, 063003.	2.9	25
157	Compton scattering study of water versus icelh: Intra- and intermolecular structure. Physical Review E, 2006, 74, 031503.	0.8	27
158	X-ray absorption spectrum of liquid water from molecular dynamics simulations: Asymmetric model. Physical Review B, 2006, 73, .	1.1	88
159	Theoretical study of ion desorption from poly-(methyl methacrylate) and poly-(isopropenyl acetate) thin films through core excitation. Journal of Chemical Physics, 2006, 124, 124901.	1.2	21
160	Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering. Journal of Chemical Physics, 2006, 125, 084504.	1.2	55
	Journal of Chemical Physics, 2000, 123, 004304.		
161	Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water. Journal of Chemical Physics, 2006, 124, 064307.	1.2	45

#	Article	IF	CITATIONS
163	Studies of the X-ray absorption spectra of some methylcyano esters. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142, 113-119.	0.8	8
164	The electronic structure effect in heterogeneous catalysis. Catalysis Letters, 2005, 100, 111-114.	1.4	349
165	Comment on "Energetics of Hydrogen Bond Network Rearrangements in Liquid Water". Science, 2005, 308, 793a-793a.	6.0	90
166	Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. Journal of Chemical Physics, 2005, 123, 154503.	1.2	79
167	Ultrafast Core-Hole-Induced Dynamics in Water Probed by X-Ray Emission Spectroscopy. Physical Review Letters, 2005, 94, 227401.	2.9	117
168	The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory. Journal of Chemical Physics, 2005, 122, 154505.	1.2	79
169	Half or full core hole in density functional theory X-ray absorption spectrum calculations of water?. Physical Chemistry Chemical Physics, 2005, 7, 2854.	1.3	96
170	X-ray Absorption Spectroscopy Study of the Hydrogen Bond Network in the Bulk Water of Aqueous Solutions. Journal of Physical Chemistry A, 2005, 109, 5995-6002.	1.1	156
171	X-ray Absorption Spectroscopy Measurements of Liquid Water. Journal of Physical Chemistry B, 2005, 109, 13835-13839.	1.2	120
172	CO2 Sorption on MgO and CaO Surfaces:  A Comparative Quantum Chemical Cluster Study. Journal of Physical Chemistry B, 2005, 109, 16774-16781.	1.2	142
173	X-ray Absorption Spectroscopy of Liquid Methanol Microjets:Â Bulk Electronic Structure and Hydrogen Bonding Network. Journal of Physical Chemistry B, 2005, 109, 10194-10203.	1.2	74
174	Sulfur KEdge XRay Absorption Spectra for Dimethyl Sulfoxide in the Solvated ThalliumIII, IndiumIII, GalliumIII and AluminumIII Ions. Physica Scripta, 2005, , 1077.	1.2	10
175	Water Dissociation on Ru(001): An Activated Process. Physical Review Letters, 2004, 93, 196101.	2.9	196
176	Ultrafast Molecular Dissociation of Water in Ice. Physical Review Letters, 2004, 93, 148302.	2.9	71
177	Compton profiles for water and mixed water-neon clusters: A measure of coordination. Physical Review B, 2004, 70, .	1.1	30
178	X-ray absorption spectra of water within a plane-wave Car-Parrinello molecular dynamics framework. Journal of Chemical Physics, 2004, 121, 10065-10075.	1.2	45
179	Experimental and theoretical characterization of the structure of defects at the pyriteFeS2(100)surface. Physical Review B, 2004, 70, .	1.1	62
180	Functional dependence of core-excitation energies. Journal of Chemical Physics, 2004, 121, 10339-10345.	1.2	144

#	Article	IF	CITATIONS
181	Geometric structure and chemical bonding of acetylene adsorbed on Cu(110). Surface Science, 2004, 565, 206-222.	0.8	24
182	Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory. Surface Science Reports, 2004, 55, 49-167.	3.8	273
183	Ethylene on Cu(110) and Ni(110): electronic structure and bonding derived from X-ray spectroscopy and theory. Surface Science, 2004, 559, 85-99.	0.8	30
184	Surface structure of thin ice films. Chemical Physics Letters, 2004, 395, 161-165.	1.2	66
185	The Structure of the First Coordination Shell in Liquid Water. Science, 2004, 304, 995-999.	6.0	1,287
186	Quantum Chemical Study on the Decomposition of N2O with O-, O2-, and O3 Journal of Physical Chemistry A, 2003, 107, 1641-1646.	1.1	1
187	Quantum Chemical Study on the Decomposition of N2O with O-, O2-, and O3 ChemInform, 2003, 34, no.	0.1	0
188	XPS and XAS investigation of condensed and adsorbed n-octane on a Cu(110) surface. Journal of Electron Spectroscopy and Related Phenomena, 2003, 128, 179-191.	0.8	40
189	Monitoring the Decomposition of Melamine in the Solid Phase by Electron Energy Loss Chronospectroscopy. Journal of Physical Chemistry A, 2003, 107, 228-235.	1.1	12
190	Comparative Study on Structures and Energetics of NOx, SOx, and COx Adsorption on Alkaline-Earth-Metal Oxides. Journal of Physical Chemistry B, 2003, 107, 7795-7802.	1.2	87
191	Hydrogen bonding between adsorbed deprotonated glycine molecules on Cu(110). Journal of Chemical Physics, 2003, 119, 12577-12585.	1.2	103
192	Direct Evidence of Orbital Mixing between Water and Solvated Transition-Metal Ions:  An Oxygen 1s XAS and DFT Study of Aqueous Systems. Journal of Physical Chemistry A, 2003, 107, 6869-6876.	1.1	67
193	Cluster modelling of O(1s) core excitons at the (100) surface of alkaline-earth oxides. Molecular Physics, 2003, 101, 255-265.	0.8	8
194	Orbital rehybridization in n-octane adsorbed on Cu(110). Journal of Chemical Physics, 2003, 118, 3782-3789.	1.2	41
195	Bonding of Saturated Hydrocarbons to Metal Surfaces. Physical Review Letters, 2003, 91, 046102.	2.9	60
196	X-ray Raman spectroscopy at the oxygenKedge of water and ice: Implications on local structure models. Physical Review B, 2002, 66, .	1.1	101
197	Structure and Bonding of Water on Pt(111). Physical Review Letters, 2002, 89, 276102.	2.9	512
198	Characterization of hydrogen bond acceptor molecules at the water surface using near-edge x-ray absorption fine-structure spectroscopy and density functional theory. Journal of Physics Condensed Matter, 2002, 14, L221-L226.	0.7	85

#	Article	IF	CITATIONS
199	Spectroscopic probing of local hydrogen-bonding structures in liquid water. Journal of Physics Condensed Matter, 2002, 14, L213-L219.	0.7	262
200	Theoretical Study on the Decomposition of N2O over Alkaline Earth Metal-Oxides:Â MgOâ^'BaO. Journal of Physical Chemistry A, 2002, 106, 7868-7875.	1.1	59
201	N2O Decomposition over BaO:Â Including Effects of Coverage. Journal of Physical Chemistry B, 2002, 106, 5719-5721.	1.2	26
202	The interpretation of X-ray absorption spectra of water and ice. Chemical Physics Letters, 2002, 364, 363-370.	1.2	182
203	Detailed study of pyridine at the C 1sand N 1sionization thresholds: The influence of the vibrational fine structure. Journal of Chemical Physics, 2001, 115, 6426-6437.	1.2	239
204	Mechanism of Dissolution of Neutral Silica Surfaces:Â Including Effect of Self-Healing. Journal of Physical Chemistry A, 2001, 105, 9528-9532.	1.1	81
205	Electronic structure effects from hydrogen bonding in the liquid phase and in chemisorption: an integrated theory and experimental effort. Journal of Synchrotron Radiation, 2001, 8, 136-140.	1.0	7
206	The electronic structure and surface chemistry of glycine adsorbed on Cu(110). Journal of Chemical Physics, 2000, 112, 5420-5427.	1.2	167
207	Probing chemical bonding in adsorbates using X-ray emission spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 110-111, 15-39.	0.8	43
208	Calculations of valence electron binding energies using Kohn–Sham theory and transition potentials. Journal of Electron Spectroscopy and Related Phenomena, 2000, 106, 51-63.	0.8	21
209	The bonding of simple carboxylic acids on Cu(110). Journal of Chemical Physics, 2000, 112, 8146-8155.	1.2	46
210	How Carbon Monoxide Adsorbs in Different Sites. Physical Review Letters, 2000, 85, 3309-3312.	2.9	157
211	Ground-state interpretation of x-ray emission spectroscopy on adsorbates: CO adsorbed on Cu(100). Physical Review B, 2000, 61, 16229-16240.	1.1	72
212	The Bonding and Electronic Structure Changes upon Adsorption of Important Functional Groups:Â Glycine on Copper. Journal of Physical Chemistry B, 2000, 104, 11480-11483.	1.2	34
213	Can the Three-Coordinated Mg Site of MgO Accommodate More Than One CO Molecule?. Journal of Physical Chemistry B, 2000, 104, 11497-11500.	1.2	14
214	Direct Experimental Measurement of Donation/Back-Donation in Unsaturated Hydrocarbon Bonding to Metals. Journal of the American Chemical Society, 2000, 122, 12310-12316.	6.6	52
215	The bonding of CO to metal surfaces. Journal of Chemical Physics, 2000, 112, 1946-1958.	1.2	165
216	Lattice Resistance to Hydrolysis of Siâ ''Oâ ''Si Bonds of Silicate Minerals:Â Ab Initio Calculations of a Single Water Attack onto the (001) and (111) β-Cristobalite Surfaces. Journal of Physical Chemistry B, 2000, 104, 5779-5783.	1.2	120

#	Article	IF	CITATIONS
217	Core Electron Spectroscopy of Chromium Hexacarbonyl. A Comparative Theoretical and Experimental Study. Physica Scripta, 1999, 59, 138-146.	1.2	4
218	Core-hole effects in x-ray-absorption spectra of fullerenes. Physical Review B, 1999, 60, 7956-7960.	1.1	118
219	Resonant soft-x-ray emission spectroscopy of surface adsorbates:â€,â€,Theory, computations, and measurements of ethylene and benzene on Cu(110). Physical Review B, 1999, 59, 5189-5200.	1.1	39
220	Interpretation of x-ray emission spectra: NO adsorbed on Ru(001). Journal of Chemical Physics, 1999, 111, 4704-4713.	1.2	21
221	Ammonia adsorbed on Cu(110): An angle resolved x-ray spectroscopic and ab initio study. Journal of Chemical Physics, 1999, 110, 4880-4890.	1.2	38
222	Separate state vs. transition state Kohn-Sham calculations of X-ray photoelectron binding energies and chemical shifts. Journal of Electron Spectroscopy and Related Phenomena, 1999, 104, 195-207.	0.8	202
223	A theoretical investigation of sulphur K-shell X-ray absorption of cysteine. Chemical Physics Letters, 1999, 309, 241-248.	1.2	17
224	Comment on "First-principles determination of the bonding mechanism and adsorption energy for CO/MgO(001)―[Chem. Phys. Lett. 290 (1998) 255]. Chemical Physics Letters, 1999, 306, 202-204.	1.2	37
225	Ni 2p–3d photoabsorption and strong charge transfer satellites in divalent Ni complexes with molecular ligands. Evaluation of π-back donation based on the density functional theory approach. Chemical Physics Letters, 1999, 311, 299-305.	1.2	19
226	Metal oxides: O2- chemistry and dynamical effects on oxide reactivity. Faraday Discussions, 1999, 114, 351-362.	1.6	14
227	Structure and Electronic Properties of Ca-Doped CeO2 and Implications on Catalytic Activity:  An Experimental and Theoretical Study. Journal of Physical Chemistry B, 1999, 103, 7627-7636.	1.2	65
228	Electron energy loss spectroscopy (EELS) of thermally evaporated Cu deposited on MgO(100)/Mo(100). Surface Science, 1998, 402-404, 450-453.	0.8	22
229	Benzene adsorbed on Cu(110): theoretical X-ray absorption, emission and shake calculations. Surface Science, 1998, 408, 1-20.	0.8	49
230	The adsorption structure of glycine adsorbed on Cu(110); comparison with formate and. Surface Science, 1998, 407, 221-236.	0.8	200
231	MO and DFT approaches to the calculation of X-ray absorption/emission spectra of nitrogen atom adsorbed on Cu(100). Surface Science, 1998, 398, 70-83.	0.8	30
232	Calculations of X-ray Emission Spectra of Molecules and Surface Adsorbates by Means of Density Functional Theory. Journal of Physical Chemistry A, 1998, 102, 10599-10607.	1.1	77
233	Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Physical Review B, 1998, 58, 8097-8110.	1.1	467
234	The electronic structure of TiCl: ligand field versus density functional calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 2857-2869.	0.6	17

#	Article	IF	CITATIONS
235	Nature of the surface chemical bond inN2on Ni(100) studied by x-ray-emission spectroscopy andab initiocalculations. Physical Review B, 1998, 57, 9274-9284.	1.1	61
236	Spin uncoupling in surface chemisorption of unsaturated hydrocarbons. Journal of Chemical Physics, 1998, 108, 1193-1205.	1.2	94
237	Theoretical study of ultraviolet photoelectron spectra of carbonyl systems: CO,Cr(CO)6, and CO/Cu(100). Physical Review B, 1997, 56, 7716-7725.	1.1	15
238	Quantum chemical studies of the effects on silicate mineral dissolution rates by adsorption of alkali metals. Geochimica Et Cosmochimica Acta, 1997, 61, 2577-2587.	1.6	41
239	Direct SCF direct static-exchange calculations of electronic spectra. Theoretical Chemistry Accounts, 1997, 97, 14-40.	0.5	171
240	On the initial and final state rules for predicting near-edge X-ray absorption intensities. Journal of Electron Spectroscopy and Related Phenomena, 1997, 83, 209-216.	0.8	6
241	Substituted benzenes as building blocks in near-edge X-ray absorption spectra. Chemical Physics, 1997, 222, 125-137.	0.9	64
242	Assembly and decomposition of building blocks to analyze polymer NEXAFS spectra. International Journal of Quantum Chemistry, 1997, 63, 749-765.	1.0	47
243	Electrostatic potential from embedded clusters. Chemical Physics Letters, 1997, 270, 351-356.	1.2	24
244	Theoretical Modelling of Chemisorption and Reactions on Metal-Oxide Surfaces. , 1997, , 425-454.		2
245	Comparing ab initio computed energetics with thermal experiments in surface science: CO/MgO(001). Journal of Chemical Physics, 1996, 105, 9339-9348.	1.2	74
246	Hydrogen Dissociation on Reconstructed ZnO Surfaces. The Journal of Physical Chemistry, 1996, 100, 9054-9063.	2.9	57
247	Adsorption of CO and NO on NiO and CoO: a comparison. Surface Science, 1996, 347, 337-345.	0.8	78
248	Cluster modelling of core electron photoabsorption of CO adsorbed on Cu(100). Surface Science, 1996, 365, 581-590.	0.8	10
249	DFT and MO calculations of atomic and molecular chemisorption energies on surface cluster models. Theoretica Chimica Acta, 1996, 94, 297-310.	0.9	19
250	Self-consistent field calculations of X-ray emission spectra of surface adsorbates: COCu(100). Surface Science, 1996, 369, 146-158.	0.8	16
251	H2O Interaction with the Polar Cu2O(100) Surface:Â A Theoretical Study. The Journal of Physical Chemistry, 1996, 100, 1874-1878.	2.9	38
252	On the interpretation of the NEXAFS spectrum of molecular oxygen. Chemical Physics Letters, 1996, 259, 21-27.	1.2	16

#	Article	IF	CITATIONS
253	Static exchange and cluster modeling of core electron shakeup spectra of surface adsorbates: CO/Cu(100). Physical Review B, 1996, 53, 16074-16085.	1.1	21
254	Theoretical Models of the Polar Cu2O(100) Cu+-Terminated Surface. The Journal of Physical Chemistry, 1996, 100, 294-298.	2.9	30
255	Static exchange and quantum defect analysis of x-ray absorption spectra of carbonyl compounds. Physica Scripta, 1996, 54, 614-624.	1.2	34
256	Static exchange calculations of X-ray absorption fine structures in polymers and surface adsorbates. Physica B: Condensed Matter, 1995, 208-209, 477-480.	1.3	8
257	Calculation of NEXAFS spectra for surface–adsorbates: Hydroxyl on Cu(111). Journal of Chemical Physics, 1995, 103, 8713-8725.	1.2	24
258	On the accuracy of gradient corrected density functional methods for transition metal complexes. Journal of Chemical Physics, 1995, 102, 872-878.	1.2	74
259	Orientational probing of polymeric thin films by NEXAFS: Calculations on polytetrafluoroethylene. Physical Review B, 1995, 51, 17848-17855.	1.1	30
260	Nearâ€edge core photoabsorption in polyenes. Journal of Chemical Physics, 1995, 102, 5589-5597.	1.2	57
261	Calculations of excitation energies and electron affinities for Be. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 5575-5586.	0.6	17
262	The bonding between NO and the NiO(100) surface. Theoretica Chimica Acta, 1994, 87, 293-305.	0.9	16
263	Simple non-empirical calculations of the zero-field splitting in bis(aquo) bis(malonato) nickel(II). Theoretica Chimica Acta, 1994, 87, 307-312.	0.9	6
264	The electronic structure of an oxygen defect in NiO (100). Chemical Physics Letters, 1994, 219, 107-112.	1.2	5
265	Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chemical Physics Letters, 1994, 222, 75-81.	1.2	205
266	Theoretical modelling of metal oxides. Influence of field strength on atomic oxygen adsorption and a simple model reaction: Oads+CO → CO2. Chemical Physics Letters, 1994, 230, 456-462.	1.2	37
267	Theoretical study of the mono- and di-hydrated divalent ions of the first-row transition metals. Chemical Physics, 1994, 184, 85-95.	0.9	14
268	Bonding between CO and the MgO(001) surface: A modified picture. Journal of Chemical Physics, 1994, 100, 2010-2018.	1.2	186
269	Adsorption of small molecules on metal oxides. Journal of Electron Spectroscopy and Related Phenomena, 1994, 69, 43-53.	0.8	13
270	Partition Function and Dissociation Energy for Sc2X5Σâ^'u. Journal of Molecular Spectroscopy, 1993, 159, 17-23.	0.4	22

#	Article	IF	CITATIONS
271	Effects of core correlation on atomic and dimeric phosphorus. Chemical Physics, 1993, 170, 149-159.	0.9	11
272	Massively parallel direct SCF calculations on large metal clusters: Ni5-Ni481. Theoretica Chimica Acta, 1993, 85, 345-361.	0.9	40
273	Ab initio model potential study of pressure effects on K2NaGaF6:Cr3+. Journal of Chemical Physics, 1993, 98, 4041-4046.	1.2	40
274	Theoretical study of water-exchange reactions for the divalent ions of the first transition period. The Journal of Physical Chemistry, 1993, 97, 3765-3774.	2.9	50
275	Franck–Condon factors for photodetachment from LiOâ^', NaOâ^', and KOâ^'. Journal of Chemical Physics, 1993, 99, 3654-3658.	1.2	15
276	Binding of radical species to surfaces: Cluster models for OH on Cu(111). Journal of Chemical Physics, 1993, 99, 610-619.	1.2	29
277	The xâ€ray excited Auger electron spectrum of NO and potential curves and photodissociation of the NO2+ ion. Journal of Chemical Physics, 1992, 96, 4884-4895.	1.2	34
278	Core correlation and the binding energy of Sc2. Journal of Chemical Physics, 1992, 97, 1850-1857.	1.2	25
279	Theoretical potential curves for the A 2Πand X 2Σ+ states of NO2+ and an experimental search for the A–X transition. Chemical Physics Letters, 1992, 191, 279-286.	1.2	22
280	The spectrum and structure of the C4 molecule. Chemical Physics Letters, 1992, 191, 473-476.	1.2	17
281	Core–valence correlation effects using approximate operators. Journal of Chemical Physics, 1991, 94, 2968-2976.	1.2	41
282	Large atomic core—core correlation effects. Chemical Physics Letters, 1991, 180, 365-368.	1.2	18
283	Core-valence correlation effects on some Cu clusters. Chemical Physics, 1991, 155, 197-206.	0.9	9
284	A theoretical study of atomic fluorine chemisorption on the Ni(100) surface. Journal of Chemical Physics, 1991, 94, 4024-4030.	1.2	52
285	On the character of the O2+2A 3â~+u state. Journal of Chemical Physics, 1991, 94, 818-819.	1.2	34
286	Hydrogen abstraction from methane on a magnesia (001) surface. The Journal of Physical Chemistry, 1991, 95, 7401-7405.	2.9	76
287	Singlet-triplet separation in some GeXY (X,Y=H, Li, F) compounds. Computational and Theoretical Chemistry, 1990, 208, 137-142.	1.5	4
288	The effects of core (3d) correlation on chemisorption. Journal of Chemical Physics, 1990, 93, 4954-4957.	1.2	21

#	Article	IF	CITATIONS
289	Electronic and geometric structure of the copper (Cun) cluster anions (n .ltoreq. 10). The Journal of Physical Chemistry, 1990, 94, 5471-5477.	2.9	72
290	On the dissociation energy of Mg2. Journal of Chemical Physics, 1990, 92, 5377-5383.	1.2	64
291	Cu 3d covalency in chemisorption?. Journal of Chemical Physics, 1989, 90, 4613-4616.	1.2	35
292	Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc. Chemical Physics, 1989, 132, 49-57.	0.9	28
293	The effect of impurities on the binding energy and structure of small Al and Be clusters. Chemical Physics, 1989, 131, 267-279.	0.9	3
294	A computational and experimental study on the Jahn-Teller effect in the hydrated copper (II) ion. Comparisons with hydrated nickel (II) ions in aqueous solution and solid Tutton's salts. Journal of Physics Condensed Matter, 1989, 1, 2395-2408.	0.7	63
295	Low-lying singlet states of MgCl+. Chemical Physics Letters, 1988, 146, 511-514.	1.2	4
296	The atomic states of nickel. Theoretica Chimica Acta, 1988, 74, 479-491.	0.9	64
297	The computed spectrum of AlC. Journal of Chemical Physics, 1988, 89, 5747-5752.	1.2	42
298	Theoretical spectrum of AlN. Journal of Chemical Physics, 1988, 89, 7354-7362.	1.2	40
299	On the bond distance in methane. Journal of Chemical Physics, 1988, 88, 6977-6981.	1.2	17
300	Positive ions of the first―and secondâ€row transition metal hydrides. Journal of Chemical Physics, 1987, 87, 481-492.	1.2	106
301	Small Al clusters. I. The effect of basis set and correlation on the geometry of small Al clusters. Journal of Chemical Physics, 1987, 87, 2198-2204.	1.2	47
302	Small Al clusters. II. Structure and binding in Aln(n=2–6, 13). Journal of Chemical Physics, 1987, 87, 2205-2213.	1.2	169
303	The bonding in FeN2, FeCO, and Fe2N2: Model systems for sideâ€on bonding of CO and N2. Journal of Chemical Physics, 1987, 87, 2129-2137.	1.2	66
304	Effective core potential parameters for first―and secondâ€row atoms. Journal of Chemical Physics, 1987, 86, 2176-2184.	1.2	109
305	Theoretical spectroscopic parameters for the lowâ€lying states of the secondâ€row transition metal hydrides. Journal of Chemical Physics, 1987, 86, 268-278.	1.2	125
306	The structure of small metal clusters. Journal of Chemical Physics, 1986, 84, 2226-2232.	1.2	61

#	Article	IF	CITATIONS
307	Theoretical electric dipole moments of SiH, GeH and SnH. Chemical Physics Letters, 1986, 125, 429-432.	1.2	27
308	Stability and structure of metal clusters: Be13 and Be55. Chemical Physics Letters, 1986, 130, 111-114.	1.2	14
309	Accurate effective core potential for germanium. Application to the singlet-triplet splitting in GeH2. Chemical Physics, 1986, 105, 355-360.	0.9	16
310	Theoretical study of the electric dipole moment function of the ClO molecule. Journal of Chemical Physics, 1986, 85, 2836-2844.	1.2	29
311	Summary Abstract: Vibrations of ammonia on the Cu(100) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 1470-1471.	0.9	7
312	Theoretical electric dipole moments and dissociation energies for the ground states of GaH–BrH. Journal of Chemical Physics, 1986, 85, 3130-3131.	1.2	35
313	Adsorbate ionicity and surface-dipole-moment changes: Cluster-model studies of Cl/Cu(100) and F/Cu(100). Physical Review Letters, 1986, 56, 500-503.	2.9	101
314	CAS SCF ECP calculations on the optical spectrum of Mo2(O2CH)4 and on the barrier to internal rotation in Mo2Cl84â~'. Chemical Physics Letters, 1985, 118, 389-394.	1.2	5
315	The effect of 3d shell back bonding on the binding of chlorine containing molecules. Journal of Chemical Physics, 1985, 83, 3538-3546.	1.2	38
316	On the role of 3d orbitals in sulfur. Chemical Physics, 1984, 89, 323-328.	0.9	33
317	Matrix-induced effects of the Aî—,X and Eî—,X transitions in SiO. A theoretical study. Chemical Physics, 1984, 85, 355-366.	0.9	2
318	CAS SCF calculations using effective core potentials on the optical spectrum of Mo2Cl84â^'. Chemical Physics Letters, 1984, 104, 336-342.	1.2	8
319	Theoretical investigation of the addition of molecular hydrogen to palladium and diaquapalladium ((H2O)2Pd). The Journal of Physical Chemistry, 1984, 88, 4617-4621.	2.9	37
320	ContractedCI calculations of models for catalytic reactions involving transition metals. International Journal of Quantum Chemistry, 1983, 23, 855-863.	1.0	39
321	Effective core potential calculations using frozen orbitals. Applications to transition metals. Chemical Physics, 1983, 80, 7-16.	0.9	145
322	Core-valence correlation effects in calcium hydride. Chemical Physics, 1983, 82, 355-368.	0.9	56
323	The binding in CIF3. Molecular Physics, 1983, 48, 871-884.	0.8	17
324	Effective core potential calculations on the NiH42â^' ion as a test case for studying rotational barriers. Chemical Physics, 1982, 66, 453-458.	0.9	20

#	Article	IF	CITATIONS
325	An investigation of basis sets and basis set superposition error in transition metals using frozen core and frozen orbital techniques. Chemical Physics, 1982, 69, 185-192.	0.9	86
326	Investigations of heavily contracted basis sets and superposition errors for some first- and second-row transition elements. Chemical Physics Letters, 1982, 89, 26-30.	1.2	3
327	Effective core potential calculations on small molecules containing transition metal atoms. Chemical Physics, 1982, 66, 459-464.	0.9	37