Paul Andrew Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7723645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 2019, 3, 1140-1151.	11.7	4,052
2	Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	11.1	297
3	A New Mean-Field Method Suitable for Strongly Correlated Electrons: Computationally Facile Antisymmetric Products of Nonorthogonal Geminals. Journal of Chemical Theory and Computation, 2013, 9, 1394-1401.	2.3	166
4	The influence of orbital rotation on the energy of closed-shell wavefunctions. Molecular Physics, 2014, 112, 853-862.	0.8	84
5	A size-consistent approach to strongly correlated systems using a generalized antisymmetrized product of nonorthogonal geminals. Computational and Theoretical Chemistry, 2013, 1003, 101-113.	1.1	81
6	Assessing the Accuracy of New Geminal-Based Approaches. Journal of Physical Chemistry A, 2014, 118, 9058-9068.	1.1	77
7	Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal. Journal of Chemical Physics, 2014, 140, 214114.	1.2	68
8	How to Compute the Fukui Matrix and Function for Systems with (Quasi-)Degenerate States. Journal of Chemical Theory and Computation, 2014, 10, 202-210.	2.3	53
9	Atomic Charges and the Electrostatic Potential Are III-Defined in Degenerate Ground States. Journal of Chemical Theory and Computation, 2013, 9, 4779-4788.	2.3	48
10	Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals. Physical Chemistry Chemical Physics, 2014, 16, 5061.	1.3	46
11	Gas-Phase Thermolysis of a Guanidinate Precursor of Copper Studied by Matrix Isolation, Time-of-Flight Mass Spectrometry, and Computational Chemistry. Inorganic Chemistry, 2010, 49, 2844-2850.	1.9	41
12	A Chiron approach towards the stereoselective synthesis of polyfluorinated carbohydrates. Nature Communications, 2018, 9, 4721.	5.8	36
13	Mechanistic Origin of β-Defect Formation in Thiophene-Based Polymers Prepared by Direct (Hetero)arylation. Macromolecules, 2018, 51, 8100-8113.	2.2	29
14	Pyromellitic Diimide-Based Copolymers and Their Application as Stable Cathode Active Materials in Lithium and Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 6821-6830.	3.2	29
15	Richardson–Gaudin mean-field for strong correlation in quantum chemistry. Journal of Chemical Physics, 2020, 153, 104110.	1.2	27
16	Pyrene Diimide Based π-Conjugated Copolymer and Single-Walled Carbon Nanotube Composites for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 8764-8773.	3.2	22
17	Strategies for extending geminal-based wavefunctions: Open shells and beyond. Computational and Theoretical Chemistry, 2017, 1116, 207-219.	1.1	19
18	Accurate Oâ°'H Bond Dissociation Energy Differences of Hydroxylamines Determined by EPR Spectroscopy: Computational Insight into Stereoelectronic Effects on BDEs and EPR Spectral Parameters, Journal of Organic Chemistry, 2011, 76, 631-636.	1.7	18

Paul Andrew Johnson

#	Article	IF	CITATIONS
19	Reduced density matrices of Richardson–Gaudin states in the Gaudin algebra basis. Journal of Chemical Physics, 2020, 153, 164117.	1.2	16
20	Near-exact treatment of seniority-zero ground and excited states with a Richardson–Gaudin mean-field. Journal of Chemical Physics, 2022, 156, .	1.2	15
21	Richardson-Gaudin geminal wavefunctions in a Slater determinant basis. Journal of Mathematical Chemistry, 2021, 59, 289-301.	0.7	10
22	Fluorine effect in nucleophilic fluorination at C4 of 1,6-anhydro-2,3-dideoxy-2,3-difluoro-β-D-hexopyranose. Beilstein Journal of Organic Chemistry, 2020, 16, 2880-2887.	1.3	8
23	Bethe ansatz of electrons as a meanâ€field wavefunction for chemical systems. International Journal of Quantum Chemistry, 2020, 120, e26255.	1.0	7
24	Transition density matrices of Richardson–Gaudin states. Journal of Chemical Physics, 2021, 154, 124125.	1.2	7
25	Density matrices of seniority-zero geminal wavefunctions. Journal of Chemical Physics, 2022, 156, .	1.2	7
26	Theoretical Insights into Optoelectronic Properties of Non-Fullerene Acceptors for the Design of Organic Photovoltaics. ACS Applied Energy Materials, 2021, 4, 11090-11100.	2.5	6
27	Bivariational principle for an antisymmetrized product of nonorthogonal geminals appropriate for strong electron correlation. Computational and Theoretical Chemistry, 2022, 1212, 113718.	1.1	3