Harald Pasch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7722961/publications.pdf

Version: 2024-02-01

		109311	175241
166	3,991	35	52
papers	citations	h-index	g-index
168	168	168	2269
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multidimensional analytical protocols for the fractionation and analysis of complex polyolefins. Journal of Polymer Science, 2022, 60, 1059-1078.	3.8	7
2	Fractionation of chain walking polyethylene and elucidation of branching, conformation and molar mass distributions. International Journal of Polymer Analysis and Characterization, 2021, 26, 47-59.	1.9	7
3	Variable temperature asymmetric flow field-flow fractionation for the topology separation of poly(methyl methacrylate). Analytica Chimica Acta, 2021, 1144, 150-157.	5.4	2
4	Characterization of polyolefins., 2021, , 173-222.		7
5	Linking molecular structure to plant conditions: advanced analysis of a systematic set of mini-plant scale low density polyethylenes. Polymer Chemistry, 2021, 12, 3026-3041.	3.9	10
6	Thermal Field-Flow Fractionation as a Powerful Tool for the Fractionation of Complex Synthetic Polymers: A Perspective. Chromatographia, 2021, 84, 525-530.	1.3	6
7	Aldehyde-Functionalized Polymers from the Reverse Iodine Transfer Polymerization of Lignin-Derivable Compounds. ACS Applied Polymer Materials, 2021, 3, 3941-3952.	4.4	7
8	Improving temperature gradient interaction chromatography of polyolefins by simultaneous use of different stationary phases. Journal of Chromatography A, 2021, 1653, 462416.	3.7	3
9	Conformation and persistence length of chitosan in aqueous solutions of different ionic strengths via asymmetric flow field-flow fractionation. Carbohydrate Polymers, 2021, 271, 118402.	10.2	11
10	Connecting the complex microstructure of LDPE to its rheology and processing properties <i>via</i> a combined fractionation and modelling approach. RSC Advances, 2021, 11, 33114-33123.	3.6	4
11	Characterization of Complex Branched Polymers by Multidetector Thermal Fieldâ€Flow Fractionation. Macromolecular Rapid Communications, 2020, 41, 1900556.	3.9	4
12	Deformulation of commercial linear lowâ€density polyethylene resins by advanced fractionation and analysis. Polymer International, 2020, 69, 291-300.	3.1	8
13	Comprehensive Analysis of Polyethylene Graft Copolymers by Preparative Fractionation, Interaction Chromatography, and Thermal Analysis. ACS Applied Polymer Materials, 2020, 2, 5864-5877.	4.4	10
14	Two-dimensional fractionation of complex polymers by comprehensive online-coupled thermal field-flow fractionation and size exclusion chromatography. Analytica Chimica Acta, 2020, 1107, 225-232.	5.4	11
15	Unraveling Multiple Distributions in Chain Walking Polyethylene Using Advanced Liquid Chromatography. Macromolecules, 2020, 53, 3765-3777.	4.8	21
16	Improving chromatographic separation of polyolefins on porous graphitic carbon stationary phases: effects of adsorption promoting solvent and column length. RSC Advances, 2020, 10, 17942-17950.	3.6	5
17	Selectivity of Thermal Analysis in the Branching Analysis of Low Density Polyethylene. Macromolecular Chemistry and Physics, 2020, 221, 2000095.	2.2	14
18	Chromatographic mode transition from size exclusion to slalom chromatography as observed for chitosan. Carbohydrate Polymers, 2020, 235, 115950.	10.2	7

#	Article	IF	Citations
19	Retention of polypropylene stereoisomers in solvent gradient interaction chromatography on porous graphitic carbon as influenced by temperature and mobile phase composition. Journal of Chromatography A, 2020, 1618, 460865.	3.7	9
20	Advanced Liquid Chromatography of Polyolefins Using Simultaneous Solvent and Temperature Gradients. Analytical Chemistry, 2020, 92, 7325-7333.	6.5	11
21	Comprehensive analysis of chestnut tannins by reversed phase and hydrophilic interaction chromatography coupled to ion mobility and high resolution mass spectrometry. Analytica Chimica Acta, 2019, 1088, 150-167.	5.4	20
22	Comprehensive analysis of tara tannins by reversed-phase and hydrophilic interaction chromatography coupled to ion mobility and high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 6329-6341.	3.7	9
23	Comprehensive branching analysis of star-shaped polystyrenes using a liquid chromatography–based approach. Analytical and Bioanalytical Chemistry, 2019, 411, 5063-5078.	3.7	8
24	Thermal Field-Flow Fractionation with Quintuple Detection for the Comprehensive Analysis of Complex Polymers. Analytical Chemistry, 2019, 91, 6926-6933.	6.5	16
25	Comprehensive two-dimensional liquid chromatography for the characterization of acrylate-modified hyaluronic acid. Analytical and Bioanalytical Chemistry, 2019, 411, 3321-3330.	3.7	8
26	Bivariate molecular structure distribution of randomly branched polyethylene by orthogonal preparative fractionation. Polymer Chemistry, 2019, 10, 2484-2494.	3.9	13
27	Applications and Experimental Design. Springer Laboratory, 2019, , 31-99.	0.2	0
28	Thermal Field-Flow Fractionation of Polymers. Springer Laboratory, 2019, , .	0.2	9
29	Thermal Field-Flow Fractionation (ThFFF). Springer Laboratory, 2019, , 13-29.	0.2	1
30	Multidimensional chromatographic analysis of carboxylic acid-functionalized polyethylene. Polymer Chemistry, 2019, 10, 5859-5869.	3.9	8
31	Online coupling of thermal field-flow fractionation and Fourier transform infrared spectroscopy as a powerful tool for polymer characterization. Journal of Chromatography A, 2019, 1587, 180-188.	3.7	12
32	Comprehensive branching analysis of polyethylene by combined fractionation and thermal analysis. Polymer International, 2019, 68, 206-217.	3.1	16
33	Branching and molar mass analysis of low density polyethylene using the multiple preparative fractionation concept. Polymer Chemistry, 2018, 9, 1116-1131.	3.9	20
34	Chemical Composition Fractionation of Olefin Plastomers/Elastomers by Solvent and Thermal Gradient Interaction Chromatography. Macromolecular Rapid Communications, 2018, 39, e1700703.	3.9	15
35	A multidimensional fractionation protocol for the oligomer analysis of oxidized waxes. Analytica Chimica Acta, 2018, 1027, 137-148.	5.4	12
36	Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases. Journal of Chromatography A, 2018, 1532, 175-181.	3.7	11

#	Article	IF	CITATIONS
37	Thermal Fieldâ€Flow Fractionation for the Investigation of the Thermoresponsive Nature of Star and Linear Polystyrene. Macromolecular Chemistry and Physics, 2018, 219, 1800417.	2.2	15
38	Stereocomplexation of Polymers in Micelle Nanoreactors As Studied by Multiple Detection Thermal Field-Flow Fractionation. Analytical Chemistry, 2018, 90, 13987-13995.	6.5	7
39	Comprehensive analysis of novel grafted polyethylenes using multidimensional fractionation methods. Polymer Chemistry, 2018, 9, 5051-5065.	3.9	18
40	Comprehensive Three-Dimensional LC \tilde{A} — LC \tilde{A} — Ion Mobility Spectrometry Separation Combined with High-Resolution MS for the Analysis of Complex Samples. Analytical Chemistry, 2018, 90, 11643-11650.	6.5	57
41	Molar Mass Analysis of Hydrophobically Modified Hyaluronic Acid by SECâ€MALLS: Facing the Challenges of Amphiphilic Biomacromolecules. Macromolecular Chemistry and Physics, 2018, 219, 1800233.	2.2	4
42	Comprehensive Analysis of Oxidized Waxes by Solvent and Thermal Gradient Interaction Chromatography and Two-Dimensional Liquid Chromatography. Analytical Chemistry, 2018, 90, 7626-7634.	6.5	14
43	Combination of preparative and two-dimensional chromatographic fractionation with thermal analysis for the branching analysis of polyethylene. Polymer Chemistry, 2018, 9, 3142-3157.	3.9	22
44	Separation of hydrophobically modified hyaluronic acid according to the degree of substitution by gradient elution high performance liquid chromatography. Analytical and Bioanalytical Chemistry, 2018, 410, 4259-4273.	3.7	6
45	Core microstructure, morphology and chain arrangement of block copolymer self-assemblies as investigated by thermal field-flow fractionation. Journal of Chromatography A, 2018, 1562, 87-95.	3.7	8
46	Characterization of Complex Polymer Self-Assemblies and Large Aggregates by Multidetector Thermal Field-Flow Fractionation. Analytical Chemistry, 2017, 89, 7216-7224.	6.5	23
47	Characterisation of block copolymer selfâ€assemblies by thermal fieldâ€flow fractionation. Polymer International, 2017, 66, 745-751.	3.1	12
48	Chemical composition separation of a propylene–ethylene random copolymer by high temperature solvent gradient interaction chromatography. Journal of Chromatography A, 2017, 1522, 23-29.	3.7	7
49	Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation. Journal of Chromatography A, 2017, 1512, 115-123.	3.7	6
50	Comprehensive analysis of branched polyethylene: the multiple preparative fractionation concept. Polymer Chemistry, 2017, 8, 4565-4575.	3.9	28
51	Exploring the Compositional Heterogeneity of Visâ€Broken Impact Poly(propylene) Copolymers by Advanced Fractionation Methods. Macromolecular Chemistry and Physics, 2016, 217, 783-793.	2.2	7
52	Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering. Journal of Chromatography A, 2016, 1442, 94-106.	3.7	26
53	Field-flow fractionation: New and exciting perspectives in polymer analysis. Progress in Polymer Science, 2016, 63, 42-85.	24.7	61
54	Field Flow Fractionation for the Size, Molar Mass, and Gel Content Analysis of Emulsion Polymers for Waterâ€Based Coatings. Macromolecular Chemistry and Physics, 2016, 217, 2027-2040.	2.2	10

#	Article	IF	Citations
55	Novel Polymer Clayâ€Based Nanocomposites: Films with Remarkable Optical and Water Vapor Barrier Properties. Macromolecular Materials and Engineering, 2016, 301, 836-845.	3.6	12
56	Ethylene/1â€heptene copolymers as interesting alternatives to 1â€octeneâ€based LLDPE: Molecular structure and physical properties. Journal of Polymer Science Part A, 2016, 54, 962-975.	2.3	20
57	Multidetector Thermal Field-Flow Fractionation: A Unique Tool for Monitoring the Structure and Dynamics of Block Copolymer Micelles. Macromolecules, 2016, 49, 1882-1889.	4.8	15
58	Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. Journal of Chromatography A, 2016, 1430, 16-78.	3.7	155
59	Advanced fractionation methods for the microstructure analysis of complex polymers. Polymers for Advanced Technologies, 2015, 26, 771-784.	3.2	22
60	On the Homogeneity of Metallocene Ethylene–Propylene Copolymers as Investigated by Multiple Fractionation Techniques. Macromolecular Chemistry and Physics, 2015, 216, 1619-1628.	2.2	7
61	Fractionation of Poly(butyl methacrylate) by Molecular Topology Using Multidetector Thermal Fieldâ€Flow Fractionation. Macromolecular Rapid Communications, 2015, 36, 2143-2148.	3.9	10
62	Polymer Science Education - A (Southern) African Perspective. Macromolecular Symposia, 2015, 355, 96-103.	0.7	1
63	Comprehensive Microstructure and Molar Mass Analysis of Polybutadiene by Multidimensional Liquid Chromatography. Macromolecular Rapid Communications, 2015, 36, 2137-2142.	3.9	7
64	Multidetector‶hF3 as a Novel Tool for the Investigation of Solution Properties of Amphiphilic Block Copolymers. Macromolecular Chemistry and Physics, 2015, 216, 1355-1364.	2.2	4
65	Synthesis and Characterization of Fourâ€Arm Star Polystyrene Based on a Novel Tetrafunctional RAFT Agent. Macromolecular Chemistry and Physics, 2015, 216, 1562-1572.	2.2	10
66	Tacticity Separation of Poly(methyl methacrylate) by Multidetector Thermal Field-Flow Fractionation. Analytical Chemistry, 2015, 87, 3011-3018.	6.5	26
67	Molecular heterogeneity of ethylene-propylene rubbers: New insights through advanced crystallization-based and chromatographic techniques. Journal of Polymer Science Part A, 2015, 53, 863-874.	2.3	25
68	A simple route to deuterated polystyrene block copolymers by reverse iodine transfer polymerisation. Polymer Chemistry, 2015, 6, 3236-3244.	3.9	6
69	Onflow liquid chromatography at critical conditions coupled to 1H and 2H nuclear magnetic resonance as powerful tools for the separation of poly(methylmethacrylate) according to isotopic composition. Journal of Chromatography A, 2015, 1387, 69-74.	3.7	7
70	High temperature size exclusion–liquid adsorption chromatography (HT-SEC–LAC): Full isocratic separation of parent isotactic polypropylene homopolymer from ethylene-propylene copolymers. Polymer, 2015, 64, 1-7.	3.8	8
71	On the multimodality of preparative TREF fractionation as detected by advanced analytical methods. Analytical and Bioanalytical Chemistry, 2015, 407, 6493-6503.	3.7	15
72	Advanced analytical methods for the structure elucidation of polystyrene- b -poly(n-butyl acrylate) block copolymers prepared by reverse iodine transfer polymerisation. Analytica Chimica Acta, 2015, 892, 183-194.	5.4	4

#	Article	IF	CITATIONS
73	Multidetector thermal field-flow fractionation as a unique tool for the tacticity-based separation of poly(methyl methacrylate)-polystyrene block copolymer micelles. Journal of Chromatography A, 2015, 1414, 163-172.	3.7	14
74	Multidetector Thermal Fieldâ€Flow Fractionation as a Novel Tool for the Microstructure Separation of Polyisoprene and Polybutadiene. Macromolecular Rapid Communications, 2014, 35, 1846-1851.	3.9	20
75	Advanced Separation Techniques for Polyolefins. Springer Laboratory, 2014, , .	0.2	25
76	HPLCâ€ ¹ Hâ€NMR Characterization of Polystyreneâ€ <i>block</i> â€Polyisoprene Copolymers: LCCCâ€ ¹ Hâ€NMR Using a Single Mobile Phase. Macromolecular Symposia, 2014, 337, 44-50.	0.7	7
77	Novel developments in the multidimensional characterization of segmented copolymers. Progress in Polymer Science, 2014, 39, 87-123.	24.7	50
78	Analysis of complex phthalic acid based polyesters by the combination of size exclusion chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2014, 808, 94-103.	5 . 4	13
79	Combined size exclusion chromatography, supercritical fluid chromatography and electrospray ionization mass spectrometry for the analysis of complex aliphatic polyesters. Journal of Chromatography A, 2014, 1330, 74-81.	3.7	11
80	Analysis of complex polymers by multidetector field-flow fractionation. Analytical and Bioanalytical Chemistry, 2014, 406, 1585-1596.	3.7	19
81	Fractionation and Characterization of Impact Poly(propylene) Copolymers by High Temperature Twoâ€Dimensional Liquid Chromatography. Macromolecular Symposia, 2014, 337, 51-57.	0.7	9
82	Online LC-NMR – From an expensive toy to a powerful tool in polymer analysis. Progress in Polymer Science, 2014, 39, 979-1016.	24.7	43
83	Surfaceâ€hitiated RAFT Polymerization of Clay Nanoparticles with Polystyrene: New Insights Using MALDI‶OF MS and ¹ H NMR. Macromolecular Chemistry and Physics, 2014, 215, 791-801.	2.2	8
84	Defining the distribution of ethylene-propylene copolymer phases in heterophasic ethylene-propylene copolymers by a sequential xylene extraction method: Chemical and morphological analysis. Polymer, 2014, 55, 5358-5369.	3.8	8
85	Preparative solution crystallization fractionation: a simple and rapid fractionation method for the chemical composition separation of complex ethylene-propylene copolymers. Analytical and Bioanalytical Chemistry, 2014, 406, 2999-3007.	3.7	9
86	Microstructure elucidation of polyflavonoid tannins by MALDIâ€TOFâ€CID. Journal of Applied Polymer Science, 2013, 127, 1937-1950.	2.6	15
87	MALDIâ€TOFâ€CID for the microstructure elucidation of polymeric hydrolysable tannins. Journal of Applied Polymer Science, 2013, 128, 97-107.	2.6	47
88	Improved chemical composition separation of ethylene–propylene random copolymers by high-temperature solvent gradient interaction chromatography. Analytical and Bioanalytical Chemistry, 2013, 405, 8607-8614.	3.7	23
89	Combination of TREF, high-temperature HPLC, FTIR and HPer DSC for the comprehensive analysis of complex polypropylene copolymers. Analytical and Bioanalytical Chemistry, 2013, 405, 8995-9007.	3.7	32
90	MALDI-TOF study of oligomers distribution in spray-dried glyoxalated lignin for wood adhesives. Journal of Adhesion Science and Technology, 2013, 27, 586-597.	2.6	14

#	Article	IF	Citations
91	Hyphenated separation techniques for complex polymers. Polymer Chemistry, 2013, 4, 2628.	3.9	46
92	Highly Filled Polystyrene/Laponite Hybrid Nanoparticles Prepared Using the Adâ€miniemulsion Polymerisation Technique. Macromolecular Chemistry and Physics, 2013, 214, 62-75.	2.2	15
93	Comprehensive high temperature two-dimensional liquid chromatography combined with high temperature gradient chromatography-infrared spectroscopy for the analysis of impact polypropylene copolymers. Journal of Chromatography A, 2013, 1286, 69-82.	3.7	42
94	Characterization of two maritime pine tannins as wood adhesives. Journal of Adhesion Science and Technology, 2013, 27, 2462-2479.	2.6	25
95	Online ThFFF–NMR: A Novel Tool for Molar Mass and Chemical Composition Analysis of Complex Macromolecules. Macromolecules, 2013, 46, 2544-2552.	4.8	20
96	Solution Crystallization and Dissolution of Polyolefins as Monitored by a Unique Analytical Tool: Solution Crystallization Analysis by Laser Light Scattering. Analytical Chemistry, 2013, 85, 7019-7023.	6.5	24
97	Multidimensional HPLC of Polymers. Springer Laboratory, 2013, , .	0.2	68
98	Chemical Composition Separation of EP Copolymers by CEF and HTâ€SGIC: Crystallization versus Adsorption. Macromolecular Chemistry and Physics, 2013, 214, 2165-2171.	2.2	19
99	Comprehensive Triblock Copolymer Analysis by Coupled Thermal Fieldâ€Flow Fractionationâ€NMR. Macromolecular Rapid Communications, 2013, 34, 1098-1103.	3.9	16
100	Preparative <scp>TREF</scp> ― <scp>HT</scp> ― <scp>HPLC</scp> ― <scp>HP</scp> er <scp>DSC</scp> : Linking Molecular Characteristics and Thermal Properties of an Impact Poly(propylene) Copolymer. Macromolecular Symposia, 2013, 330, 22-29.	0.7	12
101	Phenolic resin adhesives based on chestnut (<i>Castanea sativa</i>) hydrolysable tannins. Journal of Adhesion Science and Technology, 2013, 27, 2103-2111.	2.6	38
102	Oligomers distribution at the gel point of tannin–formaldehyde thermosetting adhesives for wood panels. Journal of Adhesion Science and Technology, 2013, 27, 2094-2102.	2.6	5
103	Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Synthetic Polymers. Macromolecular Symposia, 2012, 313-314, 157-161.	0.7	17
104	The Combination of Liquid Chromatography and Mass Spectrometry Techniques for the Characterization of Aliphatic Polyesters. Macromolecular Symposia, 2012, 313-314, 170-181.	0.7	0
105	Characterization of Polystyreneâ€ <i>block</i> â€Polyethylene Oxide Diblock Copolymers and Blends of Homopolymers by Liquid Chromatography at Critical Conditions (LCCC). Macromolecular Symposia, 2012, 313-314, 162-169.	0.7	5
106	Surfaceâ€Initiated Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of Styrene from Laponite Clay Surfaces. Macromolecular Symposia, 2012, 313-314, 135-145.	0.7	5
107	Low Formaldehyde Emitting Biobased Wood Adhesives Manufactured from Mixtures of Tannin and Glyoxylated Lignin. Journal of Adhesion Science and Technology, 2012, 26, 1667-1684.	2.6	52
108	Oligomer Distribution at the Gel Point of Tannin-resorcinol-formaldehyde Cold-Set Wood Adhesives. Journal of Adhesion Science and Technology, 2012, 26, 79-88.	2.6	8

#	Article	IF	CITATIONS
109	Multidimensional Analysis of the Complex Composition of Impact Polypropylene Copolymers: Combination of TREF, SEC-FTIR-HPer DSC, and High Temperature 2D-LC. Macromolecules, 2012, 45, 2025-2034.	4.8	85
110	Recent Advances in High-Temperature Fractionation of Polyolefins. Advances in Polymer Science, 2012, , 77-140.	0.8	62
111	NMR Studies on the Mechanism of Reverse Iodine Transfer Polymerization of Styrene. Macromolecules, 2012, 45, 2995-3003.	4.8	32
112	Compositional Analysis of an Impact Polypropylene Copolymer by Fast Scanning DSC and FTIR of TREF-SEC Cross-Fractions. Macromolecules, 2012, 45, 5866-5880.	4.8	57
113	Multidimensional Analytical Techniques for Studying the Thermoâ€Oxidative Degradation of Impact Poly(propylene). Macromolecular Symposia, 2012, 312, 174-190.	0.7	9
114	Analysis of Fatty Alcohol Ethoxylates Regarding Chain Length and Endgroups by MALDIâ€TOF MS Using Collisionâ€Induced Dissociation. Macromolecular Chemistry and Physics, 2012, 213, 747-756.	2.2	1
115	MALDIâ€₹OF MS Analysis of the Grafting of Clay Nanoparticles with Poly(butyl acrylate). Macromolecular Chemistry and Physics, 2012, 213, 847-857.	2.2	9
116	Molar Mass and Microstructure Analysis of Plâ€ <i>bâ€</i> PMMA Copolymers by SECâ€NMR. Macromolecular Chemistry and Physics, 2012, 213, 401-410.	2,2	24
117	Using Crystallisation Fractionation to Monitor Thermoâ€Oxidative Degradation of Impact Poly(propylene) Copolymers. Macromolecular Materials and Engineering, 2012, 297, 26-38.	3.6	8
118	Visualization of Thermoâ€Oxidative Degradation of Polyolefins in Solution Using HTâ€SEC and HTâ€AF4â€MALS. Macromolecular Chemistry and Physics, 2011, 212, 401-410.	2.2	8
119	Characterization of Polydimethylsiloxaneâ€ <i>block</i> â€polystyrene (PDMSâ€ <i>b</i> â€PS) Copolymers by Liquid Chromatography at Critical Conditions. Macromolecular Chemistry and Physics, 2011, 212, 1221-1228.	2.2	25
120	Spatial Heterogeneity of Thermoâ€Oxidative Degradation in Impact Poly(propylene) Copolymers. Macromolecular Materials and Engineering, 2011, 296, 1018-1027.	3.6	5
121	Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography. Journal of Chromatography A, 2011, 1218, 4257-4267.	3.7	57
122	Study of the abnormal late co-elution phenomenon of low density polyethylene in size exclusion chromatography using high temperature size exclusion chromatography and high temperature asymmetrical flow field-flow fractionation. Journal of Chromatography A, 2011, 1218, 4240-4248.	3.7	24
123	Method development for epoxy resin analysis. Microsystem Technologies, 2010, 16, 1347-1351.	2.0	7
124	Fractionation and Analysis of an Impact Poly(propylene) Copolymer by TREF and SECâ€FTIR. Macromolecular Materials and Engineering, 2010, 295, 366-373.	3.6	51
125	Wood Panel Adhesives from Low Molecular Mass Lignin and Tannin without Synthetic Resins. Journal of Adhesion Science and Technology, 2010, 24, 1597-1610.	2.6	61
126	Coupling of NMR and Liquid Chromatography at Critical Conditions: A New Tool for the Block Length and Microstructure Analysis of Block Copolymers. Macromolecules, 2010, 43, 4853-4863.	4.8	43

#	Article	IF	Citations
127	Automated Monitoring of the Establishment of the Adsorption Equilibrium: Adsorption of Polyethylene from 1,2,4-Trichlorobenzene onto a Zeolite at Temperature C. Journal of Automated Methods and Management in Chemistry, 2009, 2009, 1-6.	0.5	3
128	High Temperature Interaction Chromatography of Olefin Copolymers. Macromolecular Symposia, 2009, 282, 71-80.	0.7	30
129	Online HPLCâ€NMR of PS <i>â€bâ€</i> PMMA and Blends of PS and PMMA, 2 ―LCCCâ€NMR at Critical Conditio PMMA. Macromolecular Chemistry and Physics, 2009, 210, 605-613.	ns of 2.2	30
130	Sequence Analysis of an Isocyanate Oligomer by MALDIâ€₹OF Mass Spectrometry Using Collision Induced Dissociation. Macromolecular Chemistry and Physics, 2009, 210, 1957-1965.	2.2	17
131	Polymer structure of commercial hydrolyzable tannins by matrixâ€assisted laser desorption/ionizationâ€timeâ€ofâ€flight mass spectrometry. Journal of Applied Polymer Science, 2009, 113, 3847-3859.	2.6	69
132	An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Progress in Polymer Science, 2009, 34, 351-368.	24.7	251
133	Liquid Chromatographic Separation of Olefin Oligomers and its Relation to Separation of Polyolefins – an Overview. Macromolecular Symposia, 2009, 282, 93-100.	0.7	32
134	Separation of Linear Polyethylene from Isotactic, Atactic, and Syndiotactic Polypropylene by High-Temperature Adsorption Liquid Chromatography. Macromolecules, 2009, 42, 6063-6067.	4.8	135
135	Capillary Electrophoretic Analysis of Synthetic Copolymers with Indirect UV Detection and Contactless Conductivity Detection. International Journal of Polymer Analysis and Characterization, 2009, 14, 196-209.	1.9	2
136	Analysing the Chemical Composition Distribution of Ethyleneâ€Acrylate Copolymers: Comparison of HTâ€HPLC, CRYSTAF and TREF. Macromolecular Chemistry and Physics, 2008, 209, 1909-1919.	2.2	40
137	Twoâ€Dimensional Chromatography of Complex Polymers, 7 – Detailed Study of Polystyreneâ€ <i>block</i> â€Polyisoprene Diblock Copolymers Prepared by Sequential Anionic Polymerization and Coupling Chemistry. Macromolecular Chemistry and Physics, 2008, 209, 2026-2039.	2.2	32
138	Two-dimensional chromatography of complex polymers. Journal of Chromatography A, 2008, 1203, 207-216.	3.7	53
139	High-temperature gradient HPLC and LC-NMR for the analysis of complex polyolefins. Pure and Applied Chemistry, 2008, 80, 1747-1762.	1.9	20
140	Separation of Ethyleneâ^'Vinyl Acetate Copolymers by High-Temperature Gradient Liquid Chromatography. Macromolecules, 2007, 40, 5545-5551.	4.8	59
141	Separation and Characterization of Ethyleneâ€Propylene Copolymers by Highâ€Temperature Gradient HPLC Coupled to FTIR Spectroscopy. Macromolecular Symposia, 2007, 257, 46-55.	0.7	40
142	Onset of the Chromatographic Mode Transition from Hydrodynamic Chromatography to Slalom Chromatography:Â An Effect of Polymer Stretching. Macromolecules, 2006, 39, 2004-2006.	4.8	26
143	Selective removal of polyethylene or polypropylene from their blends based on difference in their adsorption behaviour. Journal of Chromatography A, 2006, 1115, 81-87.	3.7	31
144	Adsorption of Linear Polyethylene and Isotactic Polypropylene from 1,1,2,2-Tetrachloroethane and 1,2,3-Trichloropropane on to Polar Adsorbents. Chromatographia, 2006, 64, 183-190.	1.3	11

#	Article	IF	CITATIONS
145	Living random and block copolymerization of ethene and propene on a tailor-made phenoxyimine catalyst and characterization of the resulting high molecular weight PE-block-P(E-co-P) block copolymers. Polymer, 2006, 47, 4505-4512.	3.8	37
146	On-line coupling of high temperature GPC and 1H NMR for the analysis of polymers. Journal of Magnetic Resonance, 2006, 183, 290-302.	2.1	61
147	High-Temperature Liquid Chromatography at Critical Conditions: Separation of Polystyrene from Blends with Polyethylene and Ethylene-Styrene Block Copolymers. International Journal of Polymer Analysis and Characterization, 2006, 11, 47-55.	1.9	33
148	Adsorption of polypropylene from dilute solutions on a zeolite column packing. Journal of Separation Science, 2005, 28, 59-64.	2.5	22
149	New Developments in Multidimensional Chromatography of Complex Polymers. Macromolecular Rapid Communications, 2005, 26, 438-444.	3.9	53
150	High-temperature gradient HPLC for the separation of polyethylene–polypropylene blends. Polymer, 2005, 46, 12040-12045.	3.8	61
151	Development of high-temperature separation techniques for the chemical composition analysis of ethylene - methyl methacrylate block copolymers. E-Polymers, 2005, 5, .	3.0	6
152	Coilâ°'Stretch Transition of High Molar Mass Polymers in Packed-Column Hydrodynamic Chromatography. Macromolecules, 2005, 38, 7476-7484.	4.8	48
153	Adsorption of Polypropylene and Polyethylene on Liquid Chromatographic Column Packings. Chromatographia, 2004, 59, 461.	1.3	17
154	Adsorption of polyethylene from thermodynamically good solvents on a zeolite stationary phase. Journal of Separation Science, 2003, 26, 1569-1574.	2.5	27
155	Use of gradient, critical, and two-dimensional chromatography in the analysis of styrene- and methyl methacrylate-grafted epoxidized natural rubber. Journal of Applied Polymer Science, 2003, 88, 2530-2538.	2.6	30
156	Monitoring the grafting of epoxidized natural rubber by size-exclusion chromatography coupled to FTIR spectroscopy. Journal of Applied Polymer Science, 2003, 88, 2539-2549.	2.6	31
157	Elution behavior of polyethylene in polar mobile phases on a non-polar sorbent. Journal of Chromatography A, 2003, 988, 69-76.	3.7	44
158	Adsorption of polyethylene standards from decalin on liquid chromatography column packings. Journal of Chromatography A, 2003, 1002, 55-62.	3.7	44
159	The use of selected acrylate and acrylamide-based surfmers and polysoaps in the emulsion polymerization of styrene. Macromolecular Symposia, 2003, 193, 251-260.	0.7	13
160	Monitoring the chemical heterogeneity of metallocenecatalysed copolymers of ethylene and higher 1-olefins using CRYSTAF and SEC-FTIR. E-Polymers, 2003, 3, .	3.0	3
161	Synthesis and characterisation of propene / higher 1-olefin copolymers with the catalyst system (CH3)2Si(2-methylbenz[e]indenyl)2ZrCl2/MAO. E-Polymers, 2003, 3, .	3.0	3
162	Analysis of polyolefin blends by CRYSTAF. Macromolecular Symposia, 2002, 178, 81-92.	0.7	20

#	Article	IF	CITATION
163	Considerations on the macromolecular structure of chestnut ellagitannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Journal of Applied Polymer Science, 2002, 85, 429-437.	2.6	78
164	Investigation of the Melting and Crystallization Behavior of Random Propene∫1±-Olefin Copolymers by DSC and CRYSTAF. Macromolecular Chemistry and Physics, 2001, 202, 1281-1288.	2.2	52
165	The copolymerization of propylene with higher, linear ?-olefins. Journal of Polymer Science Part A, 2000, 38, 4110-4118.	2.3	46
166	Reverse Engineering of Chemically Similar Bimodal High Density Polyethylenes: A Comprehensive Study Using Advanced Chromatographic Techniques. Macromolecular Materials and Engineering, 0, , 2200149.	3.6	0