Yair Rivenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7722831/publications.pdf

Version: 2024-02-01

57	6,305	34	46
papers	citations	h-index	g-index
58	58	58	4689
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Automatic segmentation of peripheral arteries and veins in ferumoxytolâ€enhanced MR angiography. Magnetic Resonance in Medicine, 2022, 87, 984-998.	1.9	4
2	Computational imaging without a computer: seeing through random diffusers at the speed of light. ELight, 2022, 2, .	11.9	83
3	Classification and reconstruction of spatially overlapping phase images using diffractive optical networks. Scientific Reports, 2022, 12, 8446.	1.6	8
4	Scale-, Shift-, and Rotation-Invariant Diffractive Optical Networks. ACS Photonics, 2021, 8, 324-334.	3.2	51
5	Single-Pixel Machine Vision Using Spectral Encoding Through Diffractive Optical Networks. , 2021, , .		O
6	Terahertz pulse shaping using diffractive surfaces. Nature Communications, 2021, 12, 37.	5.8	107
7	Misalignment Tolerant Diffractive Optical Networks. , 2021, , .		2
8	Neural Network-Based On-Chip Spectroscopy Using a Scalable Plasmonic Encoder. ACS Nano, 2021, 15, 6305-6315.	7.3	34
9	Recurrent neural network-based volumetric fluorescence microscopy. Light: Science and Applications, 2021, 10, 62.	7.7	27
10	Spectrally encoded single-pixel machine vision using diffractive networks. Science Advances, 2021, 7, .	4.7	96
11	Holographic Image Reconstruction with Phase Recovery and Autofocusing Using Recurrent Neural Networks. ACS Photonics, 2021, 8, 1763-1774.	3.2	30
12	Deep-Learning-Based Virtual Refocusing of Images Using an Engineered Point-Spread Function. ACS Photonics, 2021, 8, 2174-2182.	3.2	15
13	Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data. Light: Science and Applications, 2021, 10, 155.	7.7	18
14	Deep learning-based transformation of H& E stained tissues into special stains. Nature Communications, 2021, 12, 4884.	5.8	100
15	All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light: Science and Applications, 2021, 10, 196.	7.7	52
16	Single-Shot Autofocusing of Microscopy Images Using Deep Learning. ACS Photonics, 2021, 8, 625-638.	3.2	48
17	Ensemble learning of diffractive optical networks. Light: Science and Applications, 2021, 10, 14.	7.7	75
18	All-optical information-processing capacity of diffractive surfaces. Light: Science and Applications, 2021, 10, 25.	7.7	85

#	Article	IF	CITATIONS
19	Terahertz Pulse Shaping Using Diffractive Optical Networks. , 2021, , .		3
20	Neural network-based single-shot autofocusing of microscopy images. , 2021, , .		0
21	Ensemble Learning of Diffractive Optical Neural Networks., 2021,,.		0
22	Biopsy-free in vivo virtual histology of skin using deep learning. Light: Science and Applications, 2021, 10, 233.	7.7	36
23	Design of Shift-, Scale- and Rotation Invariant Diffractive Optical Networks. , 2021, , .		1
24	Information Processing Capacity of Diffractive Optical Processors. , 2021, , .		0
25	Analysis of Diffractive Optical Neural Networks and Their Integration With Electronic Neural Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-14.	1.9	120
26	Pathological crystal imaging with singleâ€shot computational polarized light microscopy. Journal of Biophotonics, 2020, 13, e201960036.	1.1	23
27	Deep Learning-Based Holographic Polarization Microscopy. ACS Photonics, 2020, 7, 3023-3034.	3.2	41
28	Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light: Science and Applications, 2020, 9, 78.	7.7	79
29	Automated screening of sickle cells using a smartphone-based microscope and deep learning. Npj Digital Medicine, 2020, 3, 76.	5.7	57
30	Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning. Light: Science and Applications, 2020, 9, 118.	7.7	93
31	Integration of Diffractive Optical Neural Networks with Electronic Neural Networks. , 2020, , .		3
32	Misalignment resilient diffractive optical networks. Nanophotonics, 2020, 9, 4207-4219.	2.9	75
33	Emerging Advances to Transform Histopathology Using Virtual Staining. BME Frontiers, 2020, 2020, .	2.2	52
34	Deep Learning-based Virtual Refocusing of Fluorescence Microscopy Images for Neuron Imaging in 3D., 2020, , .		0
35	Deep Learning to Refocus 3D Images. Optics and Photonics News, 2020, 31, 57.	0.4	1
36	Improving the Inference Accuracy of Diffractive Optical Neural Networks Using Class-specific Differential Detection., 2020,,.		1

#	Article	IF	CITATIONS
37	Deep-Z: 3D Virtual Refocusing of Fluorescence Images Using Deep Learning. , 2020, , .		1
38	Generative Adversarial Networks Enable Cross-Modality Super-Resolution in Fluorescence Microscopy. Microscopy and Microanalysis, 2019, 25, 1228-1229.	0.2	0
39	Resolution enhancement in scanning electron microscopy using deep learning. Scientific Reports, 2019, 9, 12050.	1.6	78
40	Deep learningâ€based color holographic microscopy. Journal of Biophotonics, 2019, 12, e201900107.	1.1	36
41	Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nature Methods, 2019, 16, 1323-1331.	9.0	172
42	Deep learning in holography and coherent imaging. Light: Science and Applications, 2019, 8, 85.	7.7	174
43	Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light: Science and Applications, 2019, 8, 25.	7.7	98
44	Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nature Biomedical Engineering, 2019, 3, 466-477.	11.6	397
45	Deep learning-based super-resolution in coherent imaging systems. Scientific Reports, 2019, 9, 3926.	1.6	82
46	PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light: Science and Applications, 2019, 8, 23.	7.7	241
47	Design of task-specific optical systems using broadband diffractive neural networks. Light: Science and Applications, 2019, 8, 112.	7.7	150
48	Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nature Methods, 2019, 16, 103-110.	9.0	545
49	Accurate color imaging of pathology slides using holography and absorbance spectrum estimation of histochemical stains. Journal of Biophotonics, 2019, 12, e201800335.	1.1	9
50	Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Advanced Photonics, 2019, 1 , 1 .	6.2	79
51	Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science and Applications, 2018, 7, 17141-17141.	7.7	662
52	Deep Learning Enhanced Mobile-Phone Microscopy. ACS Photonics, 2018, 5, 2354-2364.	3.2	142
53	Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning. ACS Photonics, 2018, 5, 4617-4627.	3.2	59
54	A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light: Science and Applications, 2018, 7, 66.	7.7	131

YAIR RIVENSON

#	Article	IF	CITATIONS
55	Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 2018, 5, 704.	4.8	247
56	All-optical machine learning using diffractive deep neural networks. Science, 2018, 361, 1004-1008.	6.0	1,105
57	Deep learning microscopy. Optica, 2017, 4, 1437.	4.8	475