Jason M Mackenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/772275/publications.pdf

Version: 2024-02-01

76322 64791 6,614 80 40 79 citations h-index g-index papers 85 85 85 6104 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biology, 2004, 2, e432.	5.6	740
2	Immunolocalization of the Dengue Virus Nonstructural Glycoprotein NS1 Suggests a Role in Viral RNA Replication. Virology, 1996, 220, 232-240.	2.4	393
3	The Endoplasmic Reticulum Provides the Membrane Platform for Biogenesis of the Flavivirus Replication Complex. Journal of Virology, 2010, 84, 10438-10447.	3.4	322
4	Subcellular Localization and Some Biochemical Properties of the Flavivirus Kunjin Nonstructural Proteins NS2A and NS4A. Virology, 1998, 245, 203-215.	2.4	282
5	Assembly and Maturation of the Flavivirus Kunjin Virus Appear To Occur in the Rough Endoplasmic Reticulum and along the Secretory Pathway, Respectively. Journal of Virology, 2001, 75, 10787-10799.	3.4	271
6	Cholesterol Manipulation by West Nile Virus Perturbs the Cellular Immune Response. Cell Host and Microbe, 2007, 2, 229-239.	11.0	255
7	Wrapping Things up about Virus RNA Replication. Traffic, 2005, 6, 967-977.	2.7	223
8	Crystal Structure of the RNA Polymerase Domain of the West Nile Virus Non-structural Protein 5. Journal of Biological Chemistry, 2007, 282, 10678-10689.	3.4	222
9	Regulated Cleavages at the West Nile Virus NS4A-2K-NS4B Junctions Play a Major Role in Rearranging Cytoplasmic Membranes and Golgi Trafficking of the NS4A Protein. Journal of Virology, 2006, 80, 4623-4632.	3.4	200
10	Role of Nonstructural Protein NS2A in Flavivirus Assembly. Journal of Virology, 2008, 82, 4731-4741.	3.4	195
11	Markers for <i>trans</i> -Golgi Membranes and the Intermediate Compartment Localize to Induced Membranes with Distinct Replication Functions in Flavivirus-Infected Cells. Journal of Virology, 1999, 73, 9555-9567.	3.4	179
12	West Nile Virus Differentially Modulates the Unfolded Protein Response To Facilitate Replication and Immune Evasion. Journal of Virology, 2011, 85, 2723-2732.	3.4	173
13	West Nile Virus Core Protein. Structure, 2004, 12, 1157-1163.	3.3	159
14	The ORF7b Protein of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Is Expressed in Virus-Infected Cells and Incorporated into SARS-CoV Particles. Journal of Virology, 2007, 81, 718-731.	3.4	156
15	Proteins C and NS4B of the Flavivirus Kunjin Translocate Independently into the Nucleus. Virology, 1997, 234, 31-41.	2.4	134
16	Dengue virus nonstructural protein 1 is expressed in a glycosylâ€phosphatidylinositolâ€linked form that is capable of signal transduction. FASEB Journal, 2000, 14, 1603-1610.	0.5	120
17	Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB Journal, 2000, 14, 1603-1610.	0.5	114
18	Nascent Flavivirus RNA Colocalizedin Situwith Double-Stranded RNA in Stable Replication Complexes. Virology, 1999, 258, 108-117.	2.4	109

#	Article	IF	CITATIONS
19	Mouse Norovirus Replication Is Associated with Virus-Induced Vesicle Clusters Originating from Membranes Derived from the Secretory Pathway. Journal of Virology, 2009, 83, 9709-9719.	3.4	101
20	Kunjin RNA replication and applications of Kunjin replicons. Advances in Virus Research, 2003, 59, 99-140.	2.1	98
21	Differential Requirements for COPI Coats in Formation of Replication Complexes among Three Genera of Picornaviridae. Journal of Virology, 2002, 76, 11113-11122.	3.4	96
22	A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses. Nature Communications, 2021, 12, 3431.	12.8	89
23	A Nuclear Transport Inhibitor That Modulates the Unfolded Protein Response and Provides In Vivo Protection Against Lethal Dengue virus Infection. Journal of Infectious Diseases, 2014, 210, 1780-1791.	4.0	84
24	Modulation of Hepatitis C Virus Genome Replication by Glycosphingolipids and Four-Phosphate Adaptor Protein 2. Journal of Virology, 2014, 88, 12276-12295.	3.4	77
25	The Host Protein Reticulon 3.1A Is Utilized by Flaviviruses to Facilitate Membrane Remodelling. Cell Reports, 2017, 21, 1639-1654.	6.4	75
26	SARS-CoV-2 suppresses IFN \hat{I}^2 production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathogens, 2021, 17, e1009800.	4.7	74
27	Nlrp3 inflammasome activation and Gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLoS Pathogens, 2019, 15, e1007709.	4.7	72
28	Interferon-Induced, Antiviral Human MxA Protein Localizes to a Distinct Subcompartment of the Smooth Endoplasmic Reticulum. Journal of Interferon and Cytokine Research, 2006, 26, 650-660.	1.2	69
29	ATF6 Signaling Is Required for Efficient West Nile Virus Replication by Promoting Cell Survival and Inhibition of Innate Immune Responses. Journal of Virology, 2013, 87, 2206-2214.	3.4	65
30	Downregulation of MHC Class I Expression by Influenza A and B Viruses. Frontiers in Immunology, 2019, 10, 1158.	4.8	65
31	Subcellular localization of the MNV-1 ORF1 proteins and their potential roles in the formation of the MNV-1 replication complex. Virology, 2010, 406, 138-148.	2.4	61
32	Loss of Dimerisation of the Nonstructural Protein NS1 of Kunjin Virus Delays Viral Replication and Reduces Virulence in Mice, but Still Allows Secretion of NS1. Virology, 1999, 264, 66-75.	2.4	60
33	Recent advances in dengue pathogenesis and clinical management. Vaccine, 2015, 33, 7061-7068.	3.8	58
34	West Nile virus strain Kunjin NS5 polymerase is a phosphoprotein localized at the cytoplasmic site of viral RNA synthesis. Journal of General Virology, 2007, 88, 1163-1168.	2.9	53
35	Differential utilisation of ceramide during replication of the flaviviruses West Nile and dengue virus. Virology, 2015, 484, 241-250.	2.4	53
36	Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiology Reviews, 2021, 45,	8.6	52

#	Article	IF	Citations
37	West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. Journal of General Virology, 2007, 88, 3013-3017.	2.9	51
38	Determinants of Zika virus host tropism uncovered by deep mutational scanning. Nature Microbiology, 2019, 4, 876-887.	13.3	50
39	Mouse Norovirus 1 Utilizes the Cytoskeleton Network To Establish Localization of the Replication Complex Proximal to the Microtubule Organizing Center. Journal of Virology, 2012, 86, 4110-4122.	3.4	47
40	Phospholipase A2 activity during the replication cycle of the flavivirus West Nile virus. PLoS Pathogens, 2018, 14, e1007029.	4.7	47
41	Improved membrane preservation of flavivirus-infected cells with cryosectioning. Journal of Virological Methods, 1996, 56, 67-75.	2.1	45
42	Kunjin Virus Replicon Vectors for Human Immunodeficiency Virus Vaccine Development. Journal of Virology, 2003, 77, 7796-7803.	3.4	45
43	Stable Expression of Noncytopathic Kunjin Replicons Simulates Both Ultrastructural and Biochemical Characteristics Observed during Replication of Kunjin Virus. Virology, 2001, 279, 161-172.	2.4	41
44	Nonnucleoside Inhibitors of Norovirus RNA Polymerase: Scaffolds for Rational Drug Design. Antimicrobial Agents and Chemotherapy, 2014, 58, 3115-3123.	3.2	41
45	Antiviral Candidates for Treating Hepatitis E Virus Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	41
46	Vectorial Entry and Release of Hepatitis A Virus in Polarized Human Hepatocytes. Journal of Virology, 2008, 82, 8733-8742.	3.4	39
47	Mouse Norovirus Infection Arrests Host Cell Translation Uncoupled from the Stress Granule-PKR-eIF2α Axis. MBio, 2019, 10, .	4.1	39
48	Hepatitis C virus p7 protein is localized in the endoplasmic reticulum when it is encoded by a replication-competent genome. Journal of General Virology, 2007, 88, 134-142.	2.9	38
49	Shaping the flavivirus replication complex: It is curvaceous!. Cellular Microbiology, 2018, 20, e12884.	2.1	38
50	Non-structural protein-1 is required for West Nile virus replication complex formation and viral RNA synthesis. Virology Journal, 2013, 10, 339.	3.4	37
51	Nucleocytoplasmic shuttling of the West Nile virus <scp>RNA</scp> â€dependent <scp>RNA</scp> polymerase <scp>NS5</scp> is critical to infection. Cellular Microbiology, 2018, 20, e12848.	2.1	33
52	The IMPORTance of the Nucleus during Flavivirus Replication. Viruses, 2017, 9, 14.	3.3	32
53	Surface display of IgG Fc on baculovirus vectors enhances binding to antigen-presenting cells and cell lines expressing Fc receptors. Archives of Virology, 2009, 154, 1129-1138.	2.1	31
54	Modulation of acyl-carnitines, the broad mechanism behind <i>Wolbachia</i> -mediated inhibition of medically important flaviviruses in <i>Aedes aegypti</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24475-24483.	7.1	30

#	Article	IF	CITATIONS
55	A Conserved Peptide in West Nile Virus NS4A Protein Contributes to Proteolytic Processing and Is Essential for Replication. Journal of Virology, 2011, 85, 11274-11282.	3.4	27
56	Comparison of the replication properties of murine and human calicivirus RNA-dependent RNA polymerases. Virus Genes, 2011, 42, 16-27.	1.6	26
57	The Norovirus NS3 Protein Is a Dynamic Lipid- and Microtubule-Associated Protein Involved in Viral RNA Replication. Journal of Virology, 2017, 91, .	3.4	26
58	West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles. BMC Genomics, 2019, 20, 474.	2.8	23
59	The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein. Virology, 2014, 448, 104-116.	2.4	20
60	Monocyte apoptotic bodies are vehicles for influenza A virus propagation. Communications Biology, 2020, 3, 223.	4.4	20
61	TLR7 Agonists Display Potent Antiviral Effects against Norovirus Infection via Innate Stimulation. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	18
62	Broad-spectrum non-nucleoside inhibitors for caliciviruses. Antiviral Research, 2017, 146, 65-75.	4.1	17
63	RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation. Frontiers in Immunology, 2017, 8, 959.	4.8	17
64	Inducible System in Human Hepatoma Cell Lines for Hepatitis C Virus Production. Virology, 2002, 303, 79-99.	2.4	16
65	Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation. Virology, 2016, 492, 130-139.	2.4	14
66	Using a Virion Assembly-Defective Dengue Virus as a Vaccine Approach. Journal of Virology, 2018, 92, .	3.4	13
67	Expression of the hepatitis C virus structural proteins in mammalian cells induces morphology similar to that in natural infection. Journal of Viral Hepatitis, 2002, 9, 9-17.	2.0	12
68	The dengue virus M protein localises to the endoplasmic reticulum and forms oligomers. FEBS Letters, 2012, 586, 1032-1037.	2.8	11
69	Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation. Virology, 2015, 481, 95-106.	2.4	11
70	Norovirus Infection: Replication, Manipulation of Host, and Interaction with the Host Immune Response. Journal of Interferon and Cytokine Research, 2016, 36, 215-225.	1.2	11
71	Mouse Norovirus Infection Reduces the Surface Expression of Major Histocompatibility Complex Class I Proteins and Inhibits CD8 ⁺ T Cell Recognition and Activation. Journal of Virology, 2018, 92, .	3.4	9
72	The Adenosine Analogue NITD008 has Potent Antiviral Activity against Human and Animal Caliciviruses. Viruses, $2019,11,496.$	3.3	8

#	Article	IF	CITATIONS
73	Flaviviral regulation of the unfolded protein response: can stress be beneficial?. Future Virology, 2013, 8, 1095-1109.	1.8	5
74	Nuclear localisation of West Nile virus NS5 protein modulates host gene expression. Virology, 2021, 559, 131-144.	2.4	5
75	Comparisons of physical separation methods of Kunjin virus-induced membranes. Journal of Virological Methods, 2004, 120, 179-187.	2.1	4
76	The Microtubule-Associated Innate Immune Sensor GEF-H1 Does Not Influence Mouse Norovirus Replication in Murine Macrophages. Viruses, 2019, 11, 47.	3.3	4
77	A Putative Lipid-Associating Motif in the West Nile Virus NS4A Protein Is Required for Efficient Virus Replication. Frontiers in Cell and Developmental Biology, 2021, 9, 655606.	3.7	4
78	Flavivirus replication kinetics in early-term placental cell lines with different differentiation pathways. Virology Journal, 2021, 18, 251.	3.4	3
79	Liquid Chalk Is an Antiseptic against SARS-CoV-2 and Influenza A Respiratory Viruses. MSphere, 2021, 6, e0031321.	2.9	1
80	Immature Brain Cortical Neurons Have Low Transcriptional Competence to Activate Antiviral Defences and Control RNA Virus Infections. Journal of Innate Immunity, 2023, 15, 50-66.	3.8	1