Helena I Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7722687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From linear economy legacies to circular economy resources: Maximising the multifaceted values of legacy mineral wastes. , 2022, , 409-431.		0
2	Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms. Journal of Hazardous Materials, 2022, 427, 128122.	6.5	7
3	Methanogenesis from Mineral Carbonates, a Potential Indicator for Life on Mars. Geosciences (Switzerland), 2022, 12, 138.	1.0	2
4	Research Trends and Future Perspectives in Marine Biomimicking Robotics. Sensors, 2021, 21, 3778.	2.1	16
5	Opportunities and threats of selenium supply from unconventional and low-grade ores: A critical review. Resources, Conservation and Recycling, 2021, 170, 105593.	5.3	12
6	Evaluation of photoanode materials used in biophotovoltaic systems for renewable energy generation. Sustainable Energy and Fuels, 2021, 5, 4209-4232.	2.5	20
7	Enhanced electrodialytic bioleaching of fly ashes of municipal solid waste incineration for metal recovery. Electrochimica Acta, 2020, 345, 136188.	2.6	14
8	Bioleaching for resource recovery from low-grade wastes like fly and bottom ashes from municipal incinerators: A SWOT analysis. Science of the Total Environment, 2020, 715, 136945.	3.9	29
9	Circular economy and the matter of integrated resources. Science of the Total Environment, 2019, 689, 963-969.	3.9	161
10	Constructed wetlands for steel slag leachate management: Partitioning of arsenic, chromium, and vanadium in waters, sediments, and plants. Journal of Environmental Management, 2019, 243, 30-38.	3.8	24
11	Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. Journal of Environmental Management, 2018, 222, 30-36.	3.8	71
12	Options for managing alkaline steel slag leachate: A life cycle assessment. Journal of Cleaner Production, 2018, 202, 401-412.	4.6	24
13	Atmospheric CO ₂ Sequestration in Iron and Steel Slag: Consett, County Durham, United Kingdom. Environmental Science & Technology, 2018, 52, 7892-7900.	4.6	52
14	Resource recovery and remediation of highly alkaline residues: A political-industrial ecology approach to building a circular economy. Geoforum, 2017, 85, 336-344.	1.4	33
15	Hydraulic and biotic impacts on neutralisation of high-pH waters. Science of the Total Environment, 2017, 601-602, 1271-1279.	3.9	14
16	Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins. Journal of Environmental Management, 2017, 187, 384-392.	3.8	49
17	Vanadium removal and recovery from bauxite residue leachates by ion exchange. Environmental Science and Pollution Research, 2016, 23, 23034-23042.	2.7	33
18	Alkaline residues and the environment: a review of impacts, management practices and opportunities. Journal of Cleaner Production, 2016, 112, 3571-3582.	4.6	243

Helena I Gomes

#	Article	IF	CITATIONS
19	Nanoremediation Coupled to Electrokinetics for PCB Removal from Soil. , 2016, , 331-350.		9
20	Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods. Chemosphere, 2016, 144, 138-147.	4.2	53
21	Electrokinetics and Zero Valent Iron Nanoparticles: Experimental and Modeling of the Transport in Different Porous Media. , 2016, , 279-294.		2
22	Life Cycle Assessment of Soil and Groundwater Remediation: Groundwater Impacts of Electrokinetic Remediation. , 2016, , 173-202.		0
23	Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current. Journal of Environmental Management, 2015, 151, 550-555.	3.8	32
24	Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type. Chemosphere, 2015, 131, 157-163.	4.2	33
25	Numerical prediction of diffusion and electric field-induced iron nanoparticle transport. Electrochimica Acta, 2015, 181, 5-12.	2.6	14
26	Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere, 2014, 99, 171-179.	4.2	14
27	Assessment of combined electro–nanoremediation of molinate contaminated soil. Science of the Total Environment, 2014, 493, 178-184.	3.9	30
28	Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. Journal of Colloid and Interface Science, 2014, 433, 189-195.	5.0	55
29	Enhanced Transport and Transformation of Zerovalent Nanoiron in Clay Using Direct Electric Current. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	25
30	Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Separation and Purification Technology, 2013, 114, 64-72.	3.9	70
31	Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science of the Total Environment, 2013, 445-446, 237-260.	3.9	291
32	Phytoremediation for bioenergy: challenges and opportunities. Environmental Technology Reviews, 2012, 1, 59-66.	2.1	145
33	Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies. Chemosphere, 2012, 87, 1077-1090.	4.2	168
34	Location model for CCA-treated wood waste remediation units using GIS and clustering methods. Environmental Modelling and Software, 2007, 22, 1788-1795.	1.9	13
35	Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine Chemosphere, 2005, 59, 1229-1239.	4.2	105