Shanghong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7722416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 2011, 159, 2575-2585.	3.7	1,091
2	Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicology and Environmental Safety, 2017, 145, 295-302.	2.9	169
3	An urban storm-inundation simulation method based on GIS. Journal of Hydrology, 2014, 517, 260-268.	2.3	123
4	The influence of changes in land use and landscape patterns on soil erosion in a watershed. Science of the Total Environment, 2017, 574, 34-45.	3.9	106
5	Effects of ecological flow release patterns on water quality and ecological restoration of a large shallow lake. Journal of Cleaner Production, 2018, 174, 577-590.	4.6	78
6	How land use change contributes to reducing soil erosion in the Jialing River Basin, China. Agricultural Water Management, 2014, 133, 65-73.	2.4	47
7	Impacts on watershed-scale runoff and sediment yield resulting from synergetic changes in climate and vegetation. Catena, 2019, 179, 129-138.	2.2	46
8	Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss. Science of the Total Environment, 2020, 706, 134489.	3.9	45
9	Water and sediment yield response to extreme rainfall events in a complex large river basin: A case study of the Yellow River Basin, China. Journal of Hydrology, 2021, 597, 126183.	2.3	42
10	Parallel computation of a dam-break flow model using OpenMP on a multi-core computer. Journal of Hydrology, 2014, 512, 126-133.	2.3	41
11	Calculation and visualization of flood inundation based on a topographic triangle network. Journal of Hydrology, 2014, 509, 406-415.	2.3	38
12	Evaluation method for regional water cycle health based on nature-society water cycle theory. Journal of Hydrology, 2017, 551, 352-364.	2.3	35
13	Evaluation of water cycle health status based on a cloud model. Journal of Cleaner Production, 2020, 245, 118850.	4.6	35
14	Impact of anthropogenic activities on the sediment microbial communities of Baiyangdian shallow lake. International Journal of Sediment Research, 2020, 35, 180-192.	1.8	30
15	Distributed hierarchical evaluation and carrying capacity models for water resources based on optimal water cycle theory. Ecological Indicators, 2019, 101, 432-443.	2.6	29
16	An integrated environmental decision support system for water pollution control based on TMDL – A case study in the Beiyun River watershed. Journal of Environmental Management, 2015, 156, 31-40.	3.8	28
17	Navigation risk assessment method based on flow conditions: A case study of the river reach between the Three Gorges Dam and the Gezhouba Dam. Ocean Engineering, 2019, 175, 71-79.	1.9	28
18	Hydraulic Principles of the 2,268-Year-Old Dujiangyan Project in China. Journal of Hydraulic Engineering, 2013, 139, 538-546.	0.7	27

SHANGHONG ZHANG

#	Article	IF	CITATIONS
19	Assessment of Climate Change and Associated Vegetation Cover Change on Watershed-Scale Runoff and Sediment Yield. Water (Switzerland), 2019, 11, 1373.	1.2	27
20	A real-time interactive simulation framework for watershed decision making using numerical models and virtual environment. Journal of Hydrology, 2013, 493, 95-104.	2.3	24
21	The dynamic capacity calculation method and the flood control ability of the Three Gorges Reservoir. Journal of Hydrology, 2017, 555, 361-370.	2.3	21
22	Spatio-temporal variations of benthic macroinvertebrates and the driving environmental variables in a shallow lake. Ecological Indicators, 2020, 110, 105948.	2.6	19
23	Calculation of ecological water requirements of urban rivers using a hydrological model: A case study of Beiyun River. Journal of Cleaner Production, 2020, 262, 121368.	4.6	17
24	Multi-Water Source Joint Scheduling Model Using a Refined Water Supply Network: Case Study of Tianjin. Water (Switzerland), 2018, 10, 1580.	1.2	16
25	Flood control ability of river-type reservoirs using stochastic flood simulation and dynamic capacity flood regulation. Journal of Cleaner Production, 2020, 257, 120809.	4.6	16
26	Spatial distributions of nitrogen and phosphorus losses in a basin and responses to best management practices — Jialing River Basin case study. Agricultural Water Management, 2021, 255, 107048.	2.4	16
27	Impact of dam construction on the spawning grounds of the four major Chinese carps in the Three Gorges Reservoir. Journal of Hydrology, 2022, 609, 127694.	2.3	16
28	Study of the flood control scheduling scheme for the Three Gorges Reservoir in a catastrophic flood. Hydrological Processes, 2018, 32, 1625-1634.	1.1	13
29	A novel ecohydrological model by capturing variations in climate change and vegetation coverage in a semi-arid region of China. Environmental Research, 2022, 211, 113085.	3.7	13
30	Definition and calculation of hierarchical ecological water requirement in areas with substantial human activity—A case study of the Beijing–Tianjin-Hebei region. Ecological Indicators, 2022, 138, 108740.	2.6	11
31	Implementation methods and applications of flow visualization in a watershed simulation platform. Advances in Engineering Software, 2017, 112, 66-75.	1.8	10
32	Impacts of Rainfall, Soil Type, and Land-Use Change on Soil Erosion in the Liusha River Watershed. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	10
33	Velocity and turbulence evolution in a flexible vegetation canopy in open channel flows. Journal of Cleaner Production, 2020, 270, 122543.	4.6	10
34	Parallel Computation of a Dam-Break Flow Model Using OpenACC Applications. Journal of Hydraulic Engineering, 2017, 143, .	0.7	9
35	Three-Dimensional Waterway System for Ship Navigation Based on Integrated Virtual Waterway and Flow Simulation. Journal of Waterway, Port, Coastal and Ocean Engineering, 2017, 143, .	0.5	8
36	Flood Control Capacity of the Three Gorges Project for Different Frequency Floods. Environmental Engineering Science, 2021, 38, 1195-1205.	0.8	8

SHANGHONG ZHANG

#	Article	IF	CITATIONS
37	Joint flood control scheduling strategy of large cascade reservoirs: A case study of the cascade reservoirs in the upper reaches of the Yangtze River in China. Journal of Flood Risk Management, 2022, 15, .	1.6	8
38	CaO-Assisted Alkaline Liquid Waste Drives Corn Stalk Chemical Looping Gasification for Hydrogen Production. ACS Omega, 2020, 5, 24403-24411.	1.6	7
39	Flow simulation and visualization in a three-dimensional shipping information system. Advances in Engineering Software, 2016, 96, 29-37.	1.8	6
40	A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures. Mathematical Problems in Engineering, 2017, 2017, 1-11.	0.6	6
41	Response mechanisms of sediment microbial communities in different habitat types in a shallow lake. Ecosphere, 2019, 10, e02948.	1.0	6
42	Implementation of a Local Time Stepping Algorithm and Its Acceleration Effect on Two-Dimensional Hydrodynamic Models. Water (Switzerland), 2020, 12, 1148.	1.2	6
43	Synergistic Effects of Changes in Climate and Vegetation on Basin Runoff. Water Resources Management, 2022, 36, 3265-3281.	1.9	5
44	Effect of Frequency of Multi-Source Water Supply on Regional Guarantee Rate of Water Use. Water (Switzerland), 2019, 11, 1356.	1.2	4
45	Implementation and efficiency analysis of parallel computation using OpenACC: aÂcase study using flow field simulations. International Journal of Computational Fluid Dynamics, 2016, 30, 79-88.	0.5	3
46	Comparison of Three Different Parallel Computation Methods for a Two-Dimensional Dam-Break Model. Mathematical Problems in Engineering, 2017, 2017, 1-12.	0.6	3
47	Flood-control ability of the Three Gorges Reservoir and upstream cascade reservoirs during catastrophic flooding. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2021, , .	0.3	3
48	Effects of diameter, density, and adhesiveness on settling velocity and drag coefficient of two sturgeon species eggs in flow. Journal of Hydraulic Research/De Recherches Hydrauliques, 2022, 60, 229-239.	0.7	3
49	Impact of Land Use Change on Watershed Soil Erosion Under Different Development Scenarios. Environmental Engineering Science, 2022, 39, 379-392.	0.8	1
50	Parallel Calculation Method for Urban Two-Dimensional Rainfall Flood Model Based on Compute Unified Device Architecture. Environmental Engineering Science, 2022, 39, 685-696.	0.8	1