Xuewen Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7721960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Site Occupancy Preference, Enhancement Mechanism, and Thermal Resistance of Mn ⁴⁺ Red Luminescence in Sr ₄ Al ₁₄ O ₂₅ : Mn ⁴⁺ for Warm WLEDs. Chemistry of Materials, 2015, 27, 2938-2945.	6.7	309
2	Orderlyâ€Layered Tetravalent Manganeseâ€Doped Strontium Aluminate <scp><scp>Sr</scp></scp> ₄ <scp><scp>Al</scp>14<scp><scp>OAn Efficient Red Phosphor for Warm White Light Emitting Diodes. Journal of the American Ceramic Society, 2013, 96, 2870-2876.</scp></scp></scp>	> ₂₅	: <scp> 154</scp>
3	High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiO _{<i>x</i>} Hole Contact. ACS Applied Materials & Interfaces, 2017, 9, 2439-2448.	8.0	139
4	Hybrid PbS Quantumâ€Dotâ€inâ€Perovskite for Highâ€Efficiency Perovskite Solar Cell. Small, 2018, 14, e18010)1610.0	111
5	Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. Journal of Materials Chemistry A, 2017, 5, 1434-1441.	10.3	95
6	An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. Journal of Computational Physics, 2012, 231, 4295-4303.	3.8	94
7	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 5569-5577.	10.3	92
8	Temperature dependent red luminescence from a distorted Mn^4+ site in CaAl_4O_7:Mn^4+. Optics Express, 2013, 21, 18943.	3.4	85
9	Enhancing the Performance of Perovskite Solar Cells by Hybridizing SnS Quantum Dots with CH ₃ NH ₃ PbI ₃ . Small, 2017, 13, 1700953.	10.0	73
10	Multiple red blood cell flows through microvascular bifurcations: Cell free layer, cell trajectory, and hematocrit separation. Microvascular Research, 2013, 89, 47-56.	2.5	68
11	Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 31384-31393.	8.0	68
12	Enhancing electron transport <i>via</i> graphene quantum dot/SnO ₂ composites for efficient and durable flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1878-1888.	10.3	67
13	<i>In situ</i> formation of a 2D/3D heterostructure for efficient and stable CsPbI ₂ Br solar cells. Journal of Materials Chemistry A, 2019, 7, 22675-22682.	10.3	63
14	Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5666-5676.	10.3	62
15	Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 26334-26341.	10.3	44
16	CH ₃ NH ₃ PbI ₃ grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Science and Technology of Advanced Materials, 2017, 18, 253-262.	6.1	42
17	Perovskite/Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] Bulk Heterojunction for High-Efficient Carbon-Based Large-Area Solar Cells by Gradient Engineering. ACS Applied Materials & Interfaces, 2018, 10, 42328-42334.	8.0	37
18	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1900345.	5.8	30

XUEWEN YIN

#	Article	IF	CITATIONS
19	Perovskite solar cell-thermoelectric tandem system with a high efficiency of over 23%. Materials Today Energy, 2019, 12, 363-370.	4.7	30
20	Bifacial Modified Charge Transport Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 17861-17870.	8.0	29
21	An Excellent Modifier: Carbon Quantum Dots for Highly Efficient Carbonâ€Electrodeâ€Based Methylammonium Lead Iodide Solar Cells. Solar Rrl, 2019, 3, 1900146.	5.8	27
22	Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell. Applied Surface Science, 2018, 437, 227-232.	6.1	25
23	Role of alkyl chain length in diaminoalkane linked 2D Ruddlesden–Popper halide perovskites. CrystEngComm, 2018, 20, 6704-6712.	2.6	25
24	Spectral element method for vibration analysis of three-dimensional pipes conveying fluid. International Journal of Mechanics and Materials in Design, 2019, 15, 345-360.	3.0	23
25	Highly efficient inverted perovskite solar cells based on self-assembled graphene derivatives. Journal of Materials Chemistry A, 2018, 6, 20702-20711.	10.3	22
26	Rational Design of Solution-Processed Ti–Fe–O Ternary Oxides for Efficient Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells with Suppressed Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 34833-34843.	8.0	21
27	Dynamic stiffness formulation for in-plane and bending vibrations of plates with two opposite edges simply supported. JVC/Journal of Vibration and Control, 2018, 24, 1652-1669.	2.6	19
28	Improved phase stability of γ-CsPbI ₃ perovskite nanocrystals using the interface effect using iodine modified graphene oxide. Journal of Materials Chemistry C, 2020, 8, 2569-2578.	5.5	18
29	Active vibration isolation and underwater sound radiation control. Journal of Sound and Vibration, 2008, 318, 725-736.	3.9	16
30	Cell-free layer and wall shear stress variation in microvessels. Biorheology, 2012, 49, 261-270.	0.4	16
31	Power flow analysis of built-up plate structures using the dynamic stiffness method. JVC/Journal of Vibration and Control, 2018, 24, 2815-2831.	2.6	14
32	Dynamic stiffness formulation for the vibrations of stiffened plate structures with consideration of in-plane deformation. JVC/Journal of Vibration and Control, 2018, 24, 4825-4838.	2.6	13
33	Inverted Perovskite Solar Cells with Efficient Mixedâ€Fullerene Derivative Charge Extraction Layers. ChemistrySelect, 2018, 3, 6802-6809.	1.5	13
34	A generalized superposition method for accurate free vibration analysis of rectangular plates and assemblies. Journal of the Acoustical Society of America, 2019, 145, 185-203.	1.1	11
35	Vertically aligned ZnO/ZnTe core/shell heterostructures on an AZO substrate for improved photovoltaic performance. RSC Advances, 2017, 7, 14837-14845.	3.6	10
36	Laser-Induced Flash-Evaporation Printing CH ₃ NH ₃ PbI ₃ Thin Films for High-Performance Planar Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 26206-26212.	8.0	10

XUEWEN YIN

#	Article	IF	CITATIONS
37	Solution-processed Kesterite Cu ₂ ZnSnS ₄ as Efficient Hole Extraction Layer for Inverted Perovskite Solar Cells. Chemistry Letters, 2018, 47, 817-820.	1.3	9
38	Reduced Graphene Oxide/CZTS _x Se _{1â€x} Composites as a Novel Holeâ€Transport Functional Layer in Perovskite Solar Cells. ChemElectroChem, 2019, 6, 1500-1507.	3.4	9
39	High Efficient Large-area Perovskite Solar Cells Based on Paintable Carbon Electrode with NiO Nanocrystal-carbon Intermediate Layer. Chemistry Letters, 2019, 48, 734-737.	1.3	8
40	Efficient Inorganic Cesium Lead Mixedâ€Halide Perovskite Solar Cells Prepared by Flashâ€Evaporation Printing. Energy Technology, 2019, 7, 1800986.	3.8	7
41	Dynamic stiffness formulation for transverse and in-plane vibration of rectangular plates with arbitrary boundary conditions based on a generalized superposition method. International Journal of Mechanics and Materials in Design, 2021, 17, 119-135.	3.0	7
42	Vibration Transmission within Beam-stiffened Plate Structures Using Dynamic Stiffness Method. Procedia Engineering, 2017, 199, 411-416.	1.2	5
43	Modeling the dynamic flow–fiber interaction for microscopic biofluid systems. Journal of Biomechanics, 2013, 46, 314-318.	2.1	4
44	All Solutionâ€Processed Cu ₂ ZnSnS ₄ Solar Cell by Using Highâ€Boilingâ€Point Solvent Treated Ballâ€Milling Process with Efficiency Exceeding 6%. ChemistrySelect, 2019, 4, 982-989.	1.5	4
45	Dynamic stiffness approach to vibration transmission within a beam structure carrying spring–mass systems. International Journal of Mechanics and Materials in Design, 2020, 16, 279-288.	3.0	4
46	Allâ€Layer Sputteringâ€Free Cu2Zn1â€xCdxSnS4 Solar Cell with Efficiency Exceeding 7.5%. ChemistrySelect, 2019, 4, 5979-5983.	1.5	1
47	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1970115.	5.8	1
48	Vibration Transmission from a Machine with Three Degree of Freedoms to Beam Structures by Dynamic Stiffness Method. Shock and Vibration, 2022, 2022, 1-18.	0.6	1