
Hieu Pham Trung Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7721825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	p-Type Modulation Doped InGaN/GaN Dot-in-a-Wire White-Light-Emitting Diodes Monolithically Grown on Si(111). Nano Letters, 2011, 11, 1919-1924.	9.1	255
2	One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures. ACS Nano, 2013, 7, 7886-7893.	14.6	190
3	III-Nitride nanowire optoelectronics. Progress in Quantum Electronics, 2015, 44, 14-68.	7.0	188
4	Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode. Nano Letters, 2013, 13, 4356-4361.	9.1	186
5	Controlling Electron Overflow in Phosphor-Free InGaN/GaN Nanowire White Light-Emitting Diodes. Nano Letters, 2012, 12, 1317-1323.	9.1	178
6	Breaking the Carrier Injection Bottleneck of Phosphor-Free Nanowire White Light-Emitting Diodes. Nano Letters, 2013, 13, 5437-5442.	9.1	135
7	Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology, 2011, 22, 445202.	2.6	93
8	Engineering the Carrier Dynamics of InGaN Nanowire White Light-Emitting Diodes by Distributed p-AlGaN Electron Blocking Layers. Scientific Reports, 2015, 5, 7744.	3.3	93
9	Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes. Nano Letters, 2015, 15, 6696-6701.	9.1	85
10	High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode. Nanotechnology, 2013, 24, 175401.	2.6	84
11	Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Optics Express, 2014, 22, A1768.	3.4	82
12	Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy. Nanoscale, 2013, 5, 5283.	5.6	79
13	InN p-i-n Nanowire Solar Cells on Si. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1062-1069.	2.9	68
14	Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology, 2012, 23, 194012.	2.6	64
15	Highly efficient, spectrally pure 340 nm ultraviolet emission from Al _{<i>x</i>} Ga _{1â^'<i>x</i>} N nanowire based light emitting diodes. Nanotechnology, 2013, 24, 345201.	2.6	53
16	Full-Color InGaN/AlGaN Nanowire Micro Light-Emitting Diodes Grown by Molecular Beam Epitaxy: A Promising Candidate for Next Generation Micro Displays. Micromachines, 2019, 10, 492.	2.9	51
17	High-Efficiency InGaN/GaN Dot-in-a-Wire Red Light-Emitting Diodes. IEEE Photonics Technology Letters, 2012, 24, 321-323.	2.5	38
18	On the Carrier Injection Efficiency and Thermal Property of InGaN/GaN Axial Nanowire Light Emitting Diodes. IEEE Journal of Ouantum Electronics. 2014. 50. 483-490.	1.9	35

#	Article	IF	CITATIONS
19	High performance electron blocking layer-free InGaN/GaN nanowire white-light-emitting diodes. Optics Express, 2020, 28, 665.	3.4	35
20	Atomic Ordering in InGaN Alloys within Nanowire Heterostructures. Nano Letters, 2015, 15, 6413-6418.	9.1	32
21	High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy. Journal of Science: Advanced Materials and Devices, 2017, 2, 150-155.	3.1	28
22	p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy. Nanoscale, 2014, 6, 9970-9976.	5.6	26
23	Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy. Nanotechnology, 2015, 26, 344002.	2.6	24
24	Epitaxial Growth and Characterization of AlInN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum. Scientific Reports, 2020, 10, 2547.	3.3	23
25	Improving carrier transport in AlGaN deep-ultraviolet light-emitting diodes using a strip-in-a-barrier structure. Applied Optics, 2020, 59, 5276.	1.8	20
26	Controlling color emission of InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	19
27	Phosphor-Free InGaN/GaN Dot-in-a-Wire White Light-Emitting Diodes on Copper Substrates. Journal of Electronic Materials, 2014, 43, 868-872.	2.2	17
28	Deep red fluoride dots-in-nanoparticles for high color quality micro white light-emitting diodes. Optics Express, 2020, 28, 26189.	3.4	17
29	Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire. Proceedings of SPIE, 2016, , .	0.8	14
30	Photonic crystal-based permutation switch for optical networks. Photonic Network Communications, 2018, 35, 90-96.	2.7	14
31	Enhancing the light extraction efficiency of AlInN nanowire ultraviolet light-emitting diodes with photonic crystal structures. Optics Express, 2020, 28, 22908.	3.4	14
32	On the efficiency droop of top-down etched InGaN/GaN nanorod light emitting diodes under optical pumping. AIP Advances, 2013, 3, .	1.3	13
33	Fabrication of Phosphor-Free III-Nitride Nanowire Light-Emitting Diodes on Metal Substrates for Flexible Photonics. ACS Omega, 2017, 2, 5708-5714.	3.5	13
34	Controlling Fano resonances in multilayer dielectric gratings towards optical bistable devices. Scientific Reports, 2018, 8, 16404.	3.3	13
35	Numerical investigation on the device performance of electron blocking layer free AlInN nanowire deep ultraviolet light-emitting diodes. Optical Materials Express, 2020, 10, 472.	3.0	12
36	Engineering the color rendering index of phosphor-free InGaN/(Al)GaN nanowire white light emitting diodes grown by molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 02C113.	1.2	11

#	Article	IF	CITATIONS
37	High-performance electron-blocking-layer-free deep ultraviolet light-emitting diodes implementing a strip-in-a-barrier structure. Optics Letters, 2020, 45, 5125.	3.3	11
38	Single and doubleâ€gate based AlGaN/GaN MOSâ€HEMTs for the design of lowâ€noise amplifiers: a comparative study. IET Circuits, Devices and Systems, 2020, 14, 1018-1025.	1.4	11
39	Improvement of the emission properties from InGaN/GaN dot-in-a-wire nanostructures after treatment in the flowing afterglow of a microwave N ₂ plasma. Nanotechnology, 2014, 25, 435606.	2.6	9
40	Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing. Journal of Alloys and Compounds, 2016, 669, 246-253.	5.5	9
41	Effects of optical absorption in deep ultraviolet nanowire light-emitting diodes. Photonics and Nanostructures - Fundamentals and Applications, 2018, 28, 106-110.	2.0	9
42	Enhanced hole transport in AlGaN deep ultraviolet light-emitting diodes using a double-sided step graded superlattice electron blocking layer. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2564.	2.1	9
43	Polyol Synthesis of Zinc Oxide-Graphene Composites: Enhanced Dye- Sensitized Solar Cell Efficiency. Current Nanomaterials, 2018, 3, 52-60.	0.4	8
44	High-performance nanowire ultraviolet light-emitting diodes with potassium hydroxide and ammonium sulfide surface passivation. Applied Optics, 2020, 59, 7352.	1.8	8
45	Full-Color III-Nitride Nanowire Light-Emitting Diodes. Khoa Há»c ứng Dụng, 2019, 3, 551.	3.0	7
46	4-Port reciprocal optical circulators employing photonic crystals for integrated photonics circuits. Optik, 2017, 144, 586-590.	2.9	6
47	Nanostructured Optoelectronics: Materials and Devices. Journal of Nanomaterials, 2016, 2016, 1-2.	2.7	5
48	Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles. Journal of Luminescence, 2016, 173, 199-202.	3.1	5
49	Improving Color Quality of Nanowire White Light-Emitting Diodes with Mn4+ Doped Fluoride Nanosheets. Micromachines, 2021, 12, 965.	2.9	5
50	Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012, 3, 045018.	1.5	4
51	Improved Performance of Electron Blocking Layer Free AlGaN Deep Ultraviolet Light-Emitting Diodes Using Graded Staircase Barriers. Micromachines, 2021, 12, 334.	2.9	4
52	Enhancing Efficiency of AlGaN Ultravioletâ€B Lightâ€Emitting Diodes with Graded p <i>â€</i> AlGaN Hole Injection Layer. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100003.	1.8	4
53	Spectral and spatial contributions to white light generation from InGaN/GaN dot-in-a-wire nanostructures. Journal of Applied Physics, 2013, 114, 164305.	2.5	3
54	Observation of Fano-like resonance in dual-blade shaped gold nanostructures. Journal Physics D: Applied Physics, 2019, 52, 045106.	2.8	3

HIEU PHAM TRUNG NGUYEN

#	Article	IF	CITATIONS
55	Editorial of Special Issue "Nanostructured Light-Emitters― Micromachines, 2020, 11, 601.	2.9	3
56	Carrier transport mechanism in bottom gate <scp>thinâ€film</scp> transistor with <scp>SnO</scp> as active layer for <scp>CMOS</scp> displays. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022, 35, .	1.9	3
57	Polarization-Engineered p-Type Electron-Blocking-Layer-Free III-Nitride Deep-Ultraviolet Light-Emitting Diodes for Enhanced Carrier Transport. Journal of Electronic Materials, 2022, 51, 838-846.	2.2	3
58	Graphene-driving novel strain relaxation towards AlN film and DUV photoelectronic devices. Light: Science and Applications, 2022, 11, .	16.6	3
59	Molecular beam epitaxial growth and characterization of InGaN/GaN dot-in-a-wire nanoscale heterostructures: toward ultrahigh efficiency phosphor-free white light emitting diodes. , 2013, , .		2
60	Optical phonon modes in InGaN/GaN dot-in-a-wire heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 2013, 102, 121901.	3.3	2
61	InGaN/GaN dotâ€inâ€aâ€wire: ultimate terahertz nanostructure. Laser and Photonics Reviews, 2015, 9, 105-113.	8.7	2
62	Enhanced Efficiency of Dye-Sensitized Solar Cells Based on Polyol-Synthesized Nickel–Zinc Oxide Composites. Journal of Electronic Materials, 2019, 48, 252-260.	2.2	2
63	Controlled carrier mean free path for the enhanced efficiency of III-nitride deep-ultraviolet light-emitting diodes. Applied Optics, 2021, 60, 3088.	1.8	2
64	Effect of HfO2 Passivation Layer on Light Extraction Efficiency of AlInN Nanowire Ultraviolet Light-Emitting Diodes. ECS Transactions, 2021, 102, 35-42.	0.5	2
65	High-efficiency InGaN blue LEDs with reducedpositive sheet polarization. Applied Optics, 0, , .	1.8	2
66	Near-infrared InN nanowire optoelectronic devices on Si. , 2014, , .		1
67	High-power phosphor-free InGaN/AlGaN dot-in-a-wire core-shell white light-emitting diodes. Proceedings of SPIE, 2015, , .	0.8	1
68	<scp>2DEG</scp> characteristics of <scp>InAlAs</scp> / <scp>InP</scp> based <scp>HEMTs</scp> by solving SchrĶdinger and Poisson equations followed by device characteristics. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022, 35, e2941.	1.9	1
69	Electron Blocking Layer Free Full-Color InGaN/GaN White Light-Emitting Diodes. ECS Meeting Abstracts, 2020, MA2020-02, 2743-2743.	0.0	1
70	Phosphor-free InGaN/GaN/AlGaN core-shell dot-in-a-wire white light-emitting diodes. , 2014, , .		0
71	Effect of HfO2 Passivation Layer on Light Extraction Efficiency of AllnN Nanowire Ultraviolet Light-Emitting Diodes. ECS Meeting Abstracts, 2021, MA2021-01, 1073-1073.	0.0	0
72	Enhanced Terahertz Generation from InGaN/GaN Dot-in-a-Wire Light Emitting Diodes. , 2013, , .		0

Enhanced Terahertz Generation from InGaN/GaN Dot-in-a-Wire Light Emitting Diodes. , 2013, , . 72

#	Article	IF	CITATIONS
73	III-Nitride Based Narrow Band Far-UVC LEDs for Airborne and Surface Disinfection. ECS Transactions, 2020, 98, 83-89.	0.5	0
74	Full-Color MicroLEDs for Display Technologies. , 2020, , .		0
75	III-Nitride Based Narrow Band Far-UVC LEDs for Airborne and Surface Disinfection. ECS Meeting Abstracts, 2020, MA2020-02, 1825-1825.	0.0	0
76	Ultraviolet Light-Emitting Diodes Using Aluminium Indium Nitride Nanowire Structures. ECS Meeting Abstracts, 2020, MA2020-02, 2739-2739.	0.0	0