Marilyn E Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7720789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicology in Vitro, 2006, 20, 187-210.	2.4	773
2	Flavonoids Are Inhibitors of Breast Cancer Resistance Protein (ABCG2)-Mediated Transport. Molecular Pharmacology, 2004, 65, 1208-1216.	2.3	339
3	Effects of the Flavonoids Biochanin A, Morin, Phloretin, and Silymarin on P-Glycoprotein-Mediated Transport. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1258-1267.	2.5	318
4	MicroRNA-328 Negatively Regulates the Expression of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Cancer Cells. Molecular Pharmacology, 2009, 75, 1374-1379.	2.3	278
5	Role of Monocarboxylate Transporters in Drug Delivery to the Brain. Current Pharmaceutical Design, 2014, 20, 1487-1498.	1.9	270
6	Mechanistic Determinants of Biotherapeutics Absorption Following SC Administration. AAPS Journal, 2012, 14, 559-570.	4.4	253
7	Flavonoid–drug interactions: Effects of flavonoids on ABC transporters. Life Sciences, 2006, 78, 2116-2130.	4.3	226
8	Quercetin pharmacokinetics in humans. Biopharmaceutics and Drug Disposition, 2008, 29, 205-217.	1.9	207
9	Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacological Reviews, 2020, 72, 466-485.	16.0	186
10	Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochemical Pharmacology, 2005, 70, 627-639.	4.4	185
11	Overview of the Proton-coupled MCT (SLC16A) Family of Transporters: Characterization, Function and Role in the Transport of the Drug of Abuse γ-Hydroxybutyric Acid. AAPS Journal, 2008, 10, 311-21.	4.4	170
12	FLAVONOIDS AS A NOVEL CLASS OF HUMAN ORGANIC ANION-TRANSPORTING POLYPEPTIDE OATP1B1 (OATP-C) MODULATORS. Drug Metabolism and Disposition, 2005, 33, 1666-1672.	3.3	137
13	Gender Differences in the Membrane Transport of Endogenous and Exogenous Compounds. Pharmacological Reviews, 2003, 55, 229-240.	16.0	119
14	Combined Effects of Multiple Flavonoids on Breast Cancer Resistance Protein (ABCG2)-Mediated Transport. Pharmaceutical Research, 2004, 21, 1263-1273.	3.5	119
15	Effect of Flavonoids on MRP1-Mediated Transport in Panc-1 Cells. Journal of Pharmaceutical Sciences, 2003, 92, 250-257.	3.3	114
16	Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharmaceutical Research, 2003, 20, 1184-1191.	3.5	104
17	SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS Journal, 2017, 19, 1317-1331.	4.4	104
18	Prediction of Biliary Excretion in Rats and Humans Using Molecular Weight and Quantitative Structure–Pharmacokinetic Relationships. AAPS Journal, 2009, 11, 511-25.	4.4	102

#	Article	IF	CITATIONS
19	Pharmacokinetics of Dietary Phenethyl Isothiocyanate in Rats. Pharmaceutical Research, 2005, 22, 1658-1666.	3.5	96
20	Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats. AAPS Journal, 2006, 8, E433-E442.	4.4	91
21	FLAVONOIDS CHRYSIN AND BENZOFLAVONE, POTENT BREAST CANCER RESISTANCE PROTEIN INHIBITORS, HAVE NO SIGNIFICANT EFFECT ON TOPOTECAN PHARMACOKINETICS IN RATS OR MDR1A/1B (–/–) MICE. Dr Metabolism and Disposition, 2005, 33, 341-348.	u g .3	89
22	Effects of the Flavonoid Chrysin on Nitrofurantoin Pharmacokinetics in Rats: Potential Involvement of ABCG2. Drug Metabolism and Disposition, 2007, 35, 268-274.	3.3	89
23	Dietary Organic Isothiocyanates are Cytotoxic in Human Breast Cancer MCF-7 and Mammary Epithelial MCF-12A Cell Lines. Experimental Biology and Medicine, 2004, 229, 835-842.	2.4	86
24	Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. Clinical Pharmacology and Therapeutics, 2016, 100, 454-463.	4.7	86
25	Determination of phenethyl isothiocyanate in human plasma and urine by ammonia derivatization and liquid chromatography–tandem mass spectrometry. Analytical Biochemistry, 2003, 323, 39-47.	2.4	81
26	Liquid chromatography–tandem mass spectroscopy assay for quercetin and conjugated quercetin metabolites in human plasma and urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 821, 194-201.	2.3	79
27	Pharmacokinetics and Bioavailability of the Bioflavonoid Biochanin A: Effects of Quercetin and EGCG on Biochanin A Disposition in Rats. Molecular Pharmaceutics, 2007, 4, 865-872.	4.6	72
28	Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clinical Pharmacology and Therapeutics, 1983, 33, 529-536.	4.7	71
29	NEW 4-ARYL-1,4-DIHYDROPYRIDINES AND 4-ARYLPYRIDINES AS P-GLYCOPROTEIN INHIBITORS. Drug Metabolism and Disposition, 2005, 33, 321-328.	3.3	70
30	The Bioflavonoid Kaempferol Is an Abcg2 Substrate and Inhibits Abcg2-Mediated Quercetin Efflux. Drug Metabolism and Disposition, 2011, 39, 426-432.	3.3	70
31	Flavonoids Modulate Monocarboxylate Transporter-1-Mediated Transport of γ-Hydroxybutyrate in Vitro and in Vivo. Drug Metabolism and Disposition, 2007, 35, 201-208.	3.3	69
32	A rapid spectrofluorimetric technique for determining drug-serum protein binding suitable for high-throughput screening. Pharmaceutical Research, 2000, 17, 632-637.	3.5	67
33	Biochanin A Inhibits Breast Cancer Tumor Growth in A Murine Xenograft Model. Pharmaceutical Research, 2008, 25, 2158-63.	3.5	62
34	Transport of Î ³ -Hydroxybutyrate in Rat Kidney Membrane Vesicles: Role of Monocarboxylate Transporters. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 751-761.	2.5	61
35	EFFECTS OF DIHYDROPYRIDINES AND PYRIDINES ON MULTIDRUG RESISTANCE MEDIATED BY BREAST CANCER RESISTANCE PROTEIN: IN VITRO AND IN VIVO STUDIES. Drug Metabolism and Disposition, 2005, 33, 1220-1228.	3.3	60
36	Fluorescence Imaging of the Lymph Node Uptake of Proteins in Mice after Subcutaneous Injection: Molecular Weight Dependence. Pharmaceutical Research, 2012, 29, 1843-1853.	3.5	58

#	Article	IF	CITATIONS
37	Cellular Uptake of MCT1 Inhibitors AR-C155858 and AZD3965 and Their Effects on MCT-Mediated Transport of L-Lactate in Murine 4T1 Breast Tumor Cancer Cells. AAPS Journal, 2019, 21, 13.	4.4	58
38	Renal Clearance of Î ³ -Hydroxybutyric Acid in Rats: Increasing Renal Elimination as a Detoxification Strategy. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1194-1202.	2.5	55
39	Effect of organic isothiocyanates on the P-glycoprotein- and MRP1-mediated transport of daunomycin and vinblastine. Pharmaceutical Research, 2002, 19, 1509-1515.	3.5	53
40	The Role of Monocarboxylate Transporter 2 and 4 in the Transport of Î ³ -Hydroxybutyric Acid in Mammalian Cells. Drug Metabolism and Disposition, 2007, 35, 1393-1399.	3.3	53
41	Structure–Activity Relationships and Quantitative Structure–Activity Relationships for Breast Cancer Resistance Protein (ABCG2). AAPS Journal, 2009, 11, 541-52.	4.4	53
42	Evaluation of "true" creatinine clearance in rats reveals extensive renal secretion. Pharmaceutical Research, 1991, 08, 1318-1322.	3.5	50
43	Effects of Benzylâ€, Phenethylâ€, and αâ€naphthyl Isothiocyanates on Pâ€glycoprotein―and MRP1â€mediated Transport. Journal of Pharmaceutical Sciences, 2004, 93, 1901-1911.	3.3	48
44	The Drug of Abuse Î ³ -Hydroxybutyrate Is a Substrate for Sodium-Coupled Monocarboxylate Transporter (SMCT) 1 (SLC5A8): Characterization of SMCT-Mediated Uptake and Inhibition. Drug Metabolism and Disposition, 2009, 37, 1404-1410.	3.3	47
45	Comparison of the Effects of Phenethyl Isothiocyanate and Sulforaphane on Gene Expression in Breast Cancer and Normal Mammary Epithelial Cells. Experimental Biology and Medicine, 2009, 234, 287-295.	2.4	46
46	Characterization of Monocarboxylate Transport in Human Kidney HK-2 Cells. Molecular Pharmaceutics, 2006, 3, 675-685.	4.6	44
47	\hat{I}^3 -Hydroxybutyrate (GHB)-Induced Respiratory Depression: Combined Receptor-Transporter Inhibition Therapy for Treatment in GHB Overdose. Molecular Pharmacology, 2012, 82, 226-235.	2.3	43
48	Novel high/low solubility classification methods for new molecular entities. International Journal of Pharmaceutics, 2016, 511, 111-126.	5.2	43
49	Effect of Organic Isothiocyanates on Breast Cancer Resistance Protein (ABCG2)-Mediated Transport. Pharmaceutical Research, 2004, 21, 2261-2269.	3.5	40
50	Pharmacokinetic Interaction between the Flavonoid Luteolin and γ-Hydroxybutyrate in Rats: Potential Involvement of Monocarboxylate Transporters. AAPS Journal, 2008, 10, 47-55.	4.4	40
51	Concentration-Effect Relationships for the Drug of Abuse γ-Hydroxybutyric Acid. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 764-771.	2.5	40
52	Interactions between the flavonoid biochanin A and P-glycoprotein substrates in rats: In vitro and in vivo. Journal of Pharmaceutical Sciences, 2010, 99, 430-441.	3.3	38
53	HPLC analysis of mitoxantrone in mouse plasma and tissues: Application in a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 750-753.	2.8	38
54	Flavonoids Are Inhibitors of Human Organic Anion Transporter 1 (OAT1)–Mediated Transport. Drug Metabolism and Disposition, 2014, 42, 1357-1366.	3.3	37

#	Article	IF	CITATIONS
55	Renal Clearance and Serum Protein Binding of Acetaminophen and Its Major Conjugates in Humans. Journal of Pharmaceutical Sciences, 1984, 73, 1038-1041.	3.3	36
56	Monocarboxylate Transporter (MCT) Mediates the Transport of Î ³ -Hydroxybutyrate in Human Kidney HK-2 cells. Pharmaceutical Research, 2007, 24, 1067-1078.	3.5	36
57	ABC transporters and isothiocyanates: potential for pharmacokinetic diet–drug interactions. Biopharmaceutics and Drug Disposition, 2009, 30, 335-344.	1.9	36
58	In Vitro and In Vivo Efficacy of the Monocarboxylate Transporter 1 Inhibitor AR-C155858 in the Murine 4T1 Breast Cancer Tumor Model. AAPS Journal, 2019, 21, 3.	4.4	36
59	Competition between two enzymes for substrate removal in liver: Modulating effects due to substrate recruitment of hepatocyte activity. Journal of Pharmacokinetics and Pharmacodynamics, 1987, 15, 473-496.	0.6	35
60	γ-Hydroxybutyric Acid: Pharmacokinetics, Pharmacodynamics, and Toxicology. AAPS Journal, 2021, 23, 22.	4.4	34
61	Brain Uptake of the Drug of Abuse Î ³ -Hydroxybutyric Acid in Rats. Drug Metabolism and Disposition, 2012, 40, 212-218.	3.3	33
62	Choline Uptake in Human Intestinal Caco-2 Cells Is Carrier-Mediated. Journal of Nutrition, 2003, 133, 2607-2611.	2.9	32
63	Transport of dietary phenethyl isothiocyanate is mediated by multidrug resistance protein 2 but not P-glycoprotein. Biochemical Pharmacology, 2005, 70, 640-647.	4.4	32
64	Dietary Phenethyl Isothiocyanate Alters Gene Expression in Human Breast Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-8.	1.2	32
65	Monoclonal Antibody Pharmacokinetics in Type 2 Diabetes Mellitus and Diabetic Nephropathy. Current Pharmacology Reports, 2016, 2, 45-56.	3.0	32
66	Monocarboxylate Transporter-Mediated Transport of γ-Hydroxybutyric Acid in Human Intestinal Caco-2 Cells. Drug Metabolism and Disposition, 2010, 38, 441-447.	3.3	31
67	Pharmacokinetics, Lymph Node Uptake, and Mechanistic PK Model of Near-Infrared Dye-Labeled Bevacizumab After IV and SC Administration in Mice. AAPS Journal, 2012, 14, 252-261.	4.4	31
68	Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6. Molecular Pharmaceutics, 2017, 14, 2930-2936.	4.6	30
69	The sulfated conjugate of biochanin A is a substrate of breast cancer resistant protein (ABCG2). Biopharmaceutics and Drug Disposition, 2011, 32, 446-457.	1.9	29
70	Quantitative Structure-Pharmacokinetic Relationships for the Prediction of Renal Clearance in Humans. Drug Metabolism and Disposition, 2015, 43, 73-81.	3.3	29
71	Absorption of Sulfate from Orally Administered Magnesium Sulfate in Man. Journal of Toxicology: Clinical Toxicology, 1983, 20, 107-114.	1.5	27
72	Inhibitors of P-Glycoprotein-Mediated Daunomycin Transport in Rat Liver Canalicular Membrane Vesicles. Journal of Pharmaceutical Sciences, 1996, 85, 935-939.	3.3	27

#	Article	IF	CITATIONS
73	Mechanistic Toxicokinetic Model for Î ³ -Hydroxybutyric Acid: Inhibition of Active Renal Reabsorption as a Potential Therapeutic Strategy. AAPS Journal, 2010, 12, 407-416.	4.4	27
74	Effects of Single and Multiple Flavonoids on BCRP-Mediated Accumulation, Cytotoxicity and Transport of Mitoxantrone In Vitro. Pharmaceutical Research, 2010, 27, 1296-1308.	3.5	27
75	Salicylic Acid Induces Changes in the Physical Properties of Model and Native Kidney Membranes. Journal of Pharmaceutical Sciences, 1997, 86, 199-204.	3.3	26
76	Effects of L-Lactate and D-Mannitol on γ-Hydroxybutyrate Toxicokinetics and Toxicodynamics in Rats. Drug Metabolism and Disposition, 2008, 36, 2244-2251.	3.3	26
77	γ-Hydroxybutyrate Blood/Plasma Partitioning: Effect of Physiologic pH on Transport by Monocarboxylate Transporters. Drug Metabolism and Disposition, 2012, 40, 64-69.	3.3	26
78	In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study. British Journal of Nutrition, 2010, 104, 1288-1296.	2.3	25
79	A Physiologically Based Pharmacokinetic Model of Mitoxantrone in Mice and Scale-up to Humans: a Semi-Mechanistic Model Incorporating DNA and Protein Binding. AAPS Journal, 2012, 14, 352-364.	4.4	24
80	Pharmacokinetics and Pharmacodynamics of Phenethyl Isothiocyanate: Implications in Breast Cancer Prevention. AAPS Journal, 2014, 16, 705-713.	4.4	24
81	A Novel Monocarboxylate Transporter Inhibitor as a Potential Treatment Strategy for Î ³ -Hydroxybutyric Acid Overdose. Pharmaceutical Research, 2015, 32, 1894-1906.	3.5	24
82	Membrane Transport of Dietary Phenethyl Isothiocyanate by ABCG2 (Breast Cancer Resistance Protein). Molecular Pharmaceutics, 2005, 2, 414-419.	4.6	23
83	In Vitro and In Vivo Efficacy of AZD3965 and Alpha-Cyano-4-Hydroxycinnamic Acid in the Murine 4T1 Breast Tumor Model. AAPS Journal, 2020, 22, 84.	4.4	23
84	Determination of Salicylamide and Five Metabolites in Biological Fluids by High-Performance Liquid Chromatography. Journal of Pharmaceutical Sciences, 1983, 72, 612-617.	3.3	22
85	Increased megalin expression in early type 2 diabetes: role of insulin-signaling pathways. American Journal of Physiology - Renal Physiology, 2018, 315, F1191-F1207.	2.7	22
86	Competing pathways in drug metabolism. II. An identical, anterior enzymic distribution for 2- and 5-sulfoconjugation and a posterior localization for 5-glucuronidation of gentisamide in the rat liver. Journal of Pharmacokinetics and Pharmacodynamics, 1988, 16, 633-656.	0.6	20
87	Quantitative Structure–Activity Relationship and Quantitative Structure–Pharmacokinetics Relationship of 1,4-Dihydropyridines and Pyridines as Multidrug Resistance Modulators. Pharmaceutical Research, 2005, 22, 1989-1996.	3.5	20
88	Effects of Flavonoids Genistein and Biochanin A on Gene Expression and Their Metabolism in Human Mammary Cells. Nutrition and Cancer, 2007, 57, 48-58.	2.0	20
89	5,7-Dimethoxyflavone and Multiple Flavonoids in Combination Alter the ABCG2-Mediated Tissue Distribution of Mitoxantrone in Mice. Pharmaceutical Research, 2011, 28, 1090-1099.	3.5	20
90	Toxicokinetics/Toxicodynamics of <i>γ</i> -Hydroxybutyrate-Ethanol Intoxication: Evaluation of Potential Treatment Strategies. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 504-513.	2.5	20

#	Article	IF	CITATIONS
91	Chemopreventive and antiâ€angiogenic effects of dietary phenethyl isothiocyanate in an <i>N</i> â€methyl nitrosoureaâ€induced breast cancer animal model. Biopharmaceutics and Drug Disposition, 2013, 34, 98-106.	1.9	20
92	Absorption of Magnesium from Orally Administered Magnesium Sulfate in Man. Journal of Toxicology: Clinical Toxicology, 1987, 25, 371-382.	1.5	19
93	Pharmacokinetics and Bioavailability of the Flavonoid 7,8-Benzoflavone in Rats. Journal of Pharmaceutical Sciences, 2008, 97, 4546-4556.	3.3	19
94	Effects of Monocarboxylate Transporter Inhibition on the Oral Toxicokinetics/Toxicodynamics of <i>γ</i> -Hydroxybutyrate and <i>γ</i> -Butyrolactone. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 102-110.	2.5	19
95	Effect of orally administered phenethyl isothiocyanate on hepatic gene expression in rats. Molecular Nutrition and Food Research, 2010, 54, 1802-1806.	3.3	18
96	Simultaneous determination of the flavonoids robinin and kaempferol in human breast cancer cells by liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 109-113.	2.8	18
97	Modulation of sulfate renal transport by alterations in cell membrane fluidity. Journal of Pharmaceutical Sciences, 1999, 88, 976-980.	3.3	17
98	Effects of New 4-Aryl-1,4-Dihydropyridines and 4-Arylpyridines on Drug Efflux Mediated by Multidrug Resistance-Associated Protein 1. Journal of Pharmaceutical Sciences, 2005, 94, 2256-2265.	3.3	17
99	Brain Extracellular γ-hydroxybutyrate Concentrations are Decreased by L-lactate in Rats: Role in the Treatment of Overdoses. Pharmaceutical Research, 2013, 30, 1338-1348.	3.5	17
100	Mechanistic Models Describing Active Renal Reabsorption and Secretion: A Simulation-Based Study. AAPS Journal, 2013, 15, 278-287.	4.4	17
101	Effect of Quercetin on the Plasma and Intracellular Concentrations of Saquinavir in Healthy Adults. Pharmacotherapy, 2006, 26, 1255-1261.	2.6	16
102	Assay of inorganic sulfate in biologic fluids by nonsuppressed (single-column) ion chromatography. Analytical Biochemistry, 1988, 172, 16-21.	2.4	15
103	High-performance liquid chromatographic analysis of p-nitrophenol and its conjugates in biological samples. Biomedical Applications, 1990, 532, 285-293.	1.7	15
104	Effect of Pregnancy, Postnatal Growth, and Gender on Renal Sulfate Transport. Proceedings of the Society for Experimental Biology and Medicine, 1999, 221, 336-344.	1.8	15
105	Real-Time Quantitative Polymerase Chain Reaction for BCRP, MDR1, and MRP1 mRNA Levels in Lymphocytes and Monocytes. Acta Haematologica, 2007, 118, 169-175.	1.4	15
106	Effects of the isoflavonoid biochanin A on the transport of mitoxantrone <i>in vitro</i> and <i>in vivo</i> . Biopharmaceutics and Drug Disposition, 2010, 31, 340-350.	1.9	15
107	Effect of Type 2 Diabetes Mellitus and Diabetic Nephropathy on IgG Pharmacokinetics and Subcutaneous Bioavailability in the Rat. AAPS Journal, 2015, 17, 965-975.	4.4	15
108	Prediction of the Effects of Renal Impairment on Clearance for Organic Cation Drugs that Undergo Renal Secretion: A Simulation-Based Study. Drug Metabolism and Disposition, 2018, 46, 758-769.	3.3	15

#	Article	IF	CITATIONS
109	Monocarboxylate Transporter Inhibition with Osmotic Diuresis Increases Î ³ -Hydroxybutyrate Renal Elimination in Humans: A Proof-of-Concept Study. , 2011, 01, 1000105.		14
110	Compatibility and Stability of Diazepam Injection Following Dilution with Intravenous Fluids. American Journal of Health-System Pharmacy, 1978, 35, 669-672.	1.0	13
111	Semi-mechanistic kidney model incorporating physiologically-relevant fluid reabsorption and transporter-mediated renal reabsorption: pharmacokinetics of Î ³ -hydroxybutyric acid and l-lactate in rats. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 497-513.	1.8	13
112	Treatment of <i>γ</i> -Hydroxybutyric Acid and <i>γ</i> -Butyrolactone Overdose with Two Potent Monocarboxylate Transporter 1 Inhibitors, AZD3965 and AR-C155858. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 84-91.	2.5	13
113	Pharmacokinetics of the Monocarboxylate Transporter 1 Inhibitor AZD3965 in Mice: Potential Enterohepatic Circulation and Target-Mediated Disposition. Pharmaceutical Research, 2020, 37, 5.	3.5	13
114	Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics, 2020, 12, 963.	4.5	13
115	Effects of acute caffeine ingestion and menopause on sulfate homeostasis in women. Life Sciences, 1995, 57, 1497-1505.	4.3	12
116	Biliary excretion in dogs: Evidence for a molecular weight threshold. European Journal of Pharmaceutical Sciences, 2010, 40, 33-37.	4.0	12
117	A quantitative threshold for high/low extent of urinary excretion of compounds in humans. Biopharmaceutics and Drug Disposition, 2016, 37, 287-309.	1.9	11
118	Membrane transport in hepatic clearance of drugs. I: Extended hepatic clearance models incorporating concentration-dependent transport and elimination processes. , 1997, 14, 774-779.		10
119	Functional Expression of P-Glycoprotein in the Hepatic Canalicular Membrane of Developing Rats â€. Journal of Pharmaceutical Sciences, 1998, 87, 300-305.	3.3	10
120	Noninvasive Real-Time Fluorescence Imaging of the Lymphatic uptake of BSA–IRDye 680 Conjugate Administered Subcutaneously in Mice. Journal of Pharmaceutical Sciences, 2012, 101, 1744-1754.	3.3	10
121	Interspecies scaling: prediction of human biliary clearance and comparison with QSPKR. Biopharmaceutics and Drug Disposition, 2012, 33, 1-14.	1.9	10
122	Characterization and Proteomic-Transcriptomic Investigation of Monocarboxylate Transporter 6 Knockout Mice: Evidence of a Potential Role in Glucose and Lipid Metabolism. Molecular Pharmacology, 2019, 96, 364-376.	2.3	10
123	Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model. Pharmaceutics, 2020, 12, 201.	4.5	10
124	Membrane transport in hepatic clearance of drugs. II: Zonal distribution patterns of concentration-dependent transport and elimination processes. , 1997, 14, 780-785.		9
125	In Vitro–In Vivo Scale-up of Drug Transport Activities. , 0, , 557-588.		9
126	Effects of the flavonoid biochanin A on gene expression in primary human hepatocytes and human intestinal cells. Molecular Nutrition and Food Research, 2007, 51, 317-323.	3.3	9

#	Article	IF	CITATIONS
127	Interference of a sulfate conjugate in quantitative liquid chromatography/tandem mass spectrometry through inâ€source dissociation. Rapid Communications in Mass Spectrometry, 2010, 24, 1817-1819.	1.5	9
128	Use of a Local Sensitivity Analysis to Inform Study Design Based on a Mechanistic Toxicokinetic Model for γ-Hydroxybutyric Acid. AAPS Journal, 2011, 13, 240-254.	4.4	9
129	Sulfate homeostasis. II. Influence of chronic aspirin administration on inorganic sulfate in humans. Pharmaceutical Research, 1990, 07, 719-722.	3.5	8
130	Hepatic conjugation/deconjugation cycling pathways. Computer simulations examining the effect of michaelis-menten parameters, enzyme distribution patterns, and a diffusional barrier on metabolite disposition. Journal of Pharmacokinetics and Pharmacodynamics, 1996, 24, 219-243.	0.6	8
131	Determination of α-naphthylisothiocyanate and metabolites α-naphthylamine and α-naphthylisocyanate in rat plasma and urine by high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 788, 17-28.	2.3	8
132	Influence of Route of Administration and Liposomal Encapsulation on Blood and Lymph Node Exposure to the Protein VEGF-C156S. Journal of Pharmaceutical Sciences, 2012, 101, 852-859.	3.3	8
133	Mechanistic Modeling of Monocarboxylate Transporter-Mediated Toxicokinetic/Toxicodynamic Interactions Between γ-Hydroxybutyrate and l-Lactate. AAPS Journal, 2014, 16, 756-770.	4.4	8
134	Effect of chronic Î ³ -hydroxybutyrate (GHB) administration on GHB toxicokinetics and GHB-induced respiratory depression. American Journal of Drug and Alcohol Abuse, 2017, 43, 686-693.	2.1	8
135	Development and validation of a liquid chromatography tandem mass spectrometry assay for AZD3965 in mouse plasma and tumor tissue: Application to pharmacokinetic and breast tumor xenograft studies. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 270-275.	2.8	8
136	Effects of renal impairment on transporterâ€mediated renal reabsorption of drugs and renal drug–drug interactions: A simulationâ€based study. Biopharmaceutics and Drug Disposition, 2018, 39, 218-231.	1.9	8
137	Megalin-mediated albumin endocytosis in cultured murine mesangial cells. Biochemical and Biophysical Research Communications, 2020, 529, 740-746.	2.1	8
138	Sulfate homeostasis. III. Effect of chronic naproxen or sulindac treatment on inorganic sulfate disposition in arthritic patients with renal impairment. Pharmaceutical Research, 1991, 08, 242-246.	3.5	7
139	Multidrug Resistance Proteins of the ABCC Subfamily. , 0, , 263-318.		7
140	Drug Transport in the Liver. , 0, , 359-410.		7
141	Organic Anion–Transporting Polypeptides. , 0, , 75-104.		7
142	Immunoglobulin G Is a Novel Substrate for the Endocytic Protein Megalin. AAPS Journal, 2021, 23, 40.	4.4	7
143	Incompatibility of diazepam injection in plastic intravenous bags. American Journal of Health-System Pharmacy, 1979, 36, 505-507.	1.0	6
144	Molecular Mechanisms of Renal Sulfate Regulation. Critical Reviews in Clinical Laboratory Sciences, 2000, 37, 345-388.	6.1	6

#	Article	IF	CITATIONS
145	Pharmacokinetics of α-Naphthyl Isothiocyanate in Rats. Journal of Pharmaceutical Sciences, 2005, 94, 2441-2451.	3.3	6
146	Untargeted metabolomics identifies the potential role of monocarboxylate transporter 6 (MCT6/ <i>SLC16A5</i>) in lipid and amino acid metabolism pathways. Pharmacology Research and Perspectives, 2022, 10, e00944.	2.4	6
147	N-Acetylator variability in Down's syndrome: Characterization with caffeine. Clinical Pharmacology and Therapeutics, 1989, 46, 359-366.	4.7	5
148	Rapid Solubility Determination Using Vapor-Phase Osmometry. Journal of Biomolecular Screening, 1999, 4, 315-318.	2.6	5
149	Clinical Relevance: Drug–Drug Interactions, Pharmacokinetics, Pharmacodynamics, and Toxicity. , 0, , 747-880.		5
150	Reevaluation of a Quantitative Structure Pharmacokinetic Model for Biliary Excretion in Rats. Drug Metabolism and Disposition, 2012, 40, 1259-1262.	3.3	5
151	An Extended Minimal Physiologically Based Pharmacokinetic Model: Evaluation of Type II Diabetes Mellitus and Diabetic Nephropathy on Human IgG Pharmacokinetics in Rats. AAPS Journal, 2015, 17, 1464-1474.	4.4	5
152	Unconjugated p-cresol activates macrophage macropinocytosis leading to increased LDL uptake. JCI Insight, 2021, 6, .	5.0	5
153	Oral contraceptive-induced ischemic bowel disease. American Journal of Health-System Pharmacy, 1979, 36, 1103-1107.	1.0	4
154	Magnesium Cerebrospinal Fluid Concentrations and Protein Binding in Magnesium-Deficient Rats. Journal of Pharmaceutical Sciences, 1990, 79, 458-459.	3.3	4
155	Sulfate homeostasis. IV. Probenecid-induced alterations of inorganic sulfate in rats. Pharmaceutical Research, 1991, 08, 376-379.	3.5	4
156	Pharmacokinetics and bioavailability of a newly synthesized dihydropyridine compound with multidrug resistance reversal activity. Biopharmaceutics and Drug Disposition, 2005, 26, 279-285.	1.9	4
157	Pharmacokinetics and Biliary Excretion of Mitoxantrone in Rats. Journal of Pharmaceutical Sciences, 2010, 99, 2502-2510.	3.3	4
158	γ-Hydroxybutyric Acid (GHB) Pharmacokinetics and Pharmacodynamics: Semi-Mechanistic and Physiologically Relevant PK/PD Model. AAPS Journal, 2017, 19, 1449-1460.	4.4	4
159	<i>^{ĵ3}</i> -Hydroxybutyric Acid–Ethanol Drug-Drug Interaction: Reversal of Toxicity with Monocarboxylate Transporter 1 Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 42-50.	2.5	4
160	Drug Transport in the Kidney. , 0, , 463-493.		4
161	Effect of Acetaminophen on Inorganic Sulfate Concentrations in Human Cerebrospinal Fluid. Journal of Pharmaceutical Sciences, 1986, 75, 722-723.	3.3	3
162	Nonlinear Pharmacokinetics and Protein Binding of Tiaprofenic Acid in Female Lewis Rats. Journal of Pharmaceutical Sciences, 1993, 82, 429-430.	3.3	3

#	Article	IF	CITATIONS
163	Hepatic membrane transport of organic cations using isolated rat hepatocyte membrane vesicles: structure-transport relationships. Pharmaceutical Research, 1995, 12, 1109-1114.	3.5	3
164	Efflux Transporters in Drug Excretion. , 2005, , 381-410.		3
165	Diet/Nutrient Interactions with Drug Transporters. , 0, , 665-708.		3
166	Interplay of Drug Transporters and Enzymes on Hepatic Drug Processing. , 0, , 709-745.		3
167	The Drug of Abuse Gamma-Hydroxybutyric Acid Exhibits Tissue-Specific Nonlinear Distribution. AAPS Journal, 2018, 20, 21.	4.4	3
168	Simulation-Based Analysis of the Impact of Renal Impairment on the Pharmacokinetics of Highly Metabolized Compounds. Pharmaceutics, 2019, 11, 105.	4.5	3
169	Women in the Pharmaceutical Sciences: Honoring Our Pioneers. AAPS Journal, 2020, 22, 136.	4.4	3
170	Contribution of Monocarboxylate Transporter 6 to the Pharmacokinetics and Pharmacodynamics of Bumetanide in Mice. Drug Metabolism and Disposition, 2020, 48, 788-795.	3.3	3
171	Herbal Supplement-Based Interactions. , 2010, , 555-584.		3
172	Analgesic activity of floctafenine after cholecystectomy. Clinical Pharmacology and Therapeutics, 1978, 23, 383-389.	4.7	2
173	Pharmacodynamics of the Hypnotic Effect of Salicylamide in Rats. Journal of Pharmaceutical Sciences, 1985, 74, 599-602.	3.3	2
174	Overview of Drug Transporter Families. , 0, , 1-10.		2
175	Effect of 3,4-Methylenedioxymethamphetamine on the Toxicokinetics and Sedative Effects of the Drug of Abuse, ^{ĵ3} -Hydroxybutyric Acid. Journal of Pharmaceutical Sciences, 2014, 103, 3310-3315.	3.3	2
176	Toxicokinetic/Toxicodynamic Interaction Studies in Rats between the Drugs of Abuse γ-Hydroxybutyric Acid and Ketamine and Treatment Strategies for Overdose. Pharmaceutics, 2021, 13, 741.	4.5	2
177	Effect of an Analgesic Dose of Aspirin on Electrolyte Disposition in Healthy Subjects. Journal of Pharmaceutical Sciences, 1988, 77, 814-815.	3.3	1
178	A high-performance liquid chromatographic method for determination of the niguldipine analogue DHP-014. Biomedical Chromatography, 2006, 20, 48-53.	1.7	1
179	Drug Transporters in the Intestine. , 0, , 495-515.		1
180	Monocarboxylate Transporters. , 0, , 147-170.		1

#	Article	IF	CITATIONS
181	Wiley Series in Drug Discovery and Development. , 0, , 890-890.		1
182	Efflux transporters in cancer resistance: Molecular and functional characterization of breast cancer resistance protein. , 2020, , 67-96.		1
183	Drugâ€drug interaction between diclofenac and gammaâ€hydroxybutyric acid. Biopharmaceutics and Drug Disposition, 2021, 42, 351-358.	1.9	1
184	Hormonal Regulation of Sodium/Sulfate Coâ€Transport in Renal Epithelial Cells. Proceedings of the Society for Experimental Biology and Medicine, 2000, 225, 49-57.	1.8	1
185	Organic Anion Transporters. , 0, , 51-73.		0
186	Polymorphisms of Drug Transporters and Clinical Relevance. , 0, , 619-663.		0
187	Age- and Gender-Related Differences in Xenobiotic Transporter Expression. , 0, , 589-617.		0
188	Regulation of Drug Transporter Activity. , 0, , 517-531.		0
189	Experimental Approaches to the Study of Drug Transporters. , 0, , 533-556.		Ο
190	Organic Cation/Carnitine Transporters. , 0, , 35-50.		0
191	Nucleoside Transporters: CNTs and ENTs. , 0, , 171-200.		Ο
192	2007 highlights of advances in the pharmaceutical sciences: An American Association of Pharmaceutical Scientists (AAPS) perspective. AAPS Journal, 2007, 9, E219-E226.	4.4	0
193	Monocarboxylate Transporter (SLC16A). , 2018, , 3175-3189.		0
194	Treatment of γ-Hydroxybutyrate (GHB) Overdose with the GABA _B Antagonist SCS742. Journal of Pharmacology and Experimental Therapeutics, 2022, , JPET-AR-2022-001108.	2.5	0