
Lijing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7720372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pd/Mg(OH) ₂ /MgO–ZrO ₂ Nanocomposite Systems for Highly Efficient Suzuki–Miyaura Coupling Reaction at Room Temperature: Implications for Low-Carbon Green Organic Synthesis. ACS Applied Nano Materials, 2022, 5, 8059-8069.	5.0	3
2	Casein-Hydroxyapatite Composite Microspheres for Strontium-Containing Wastewater Treatment. ACS ES&T Water, 2021, 1, 900-909.	4.6	4
3	Origami-Based Bionic Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 4279-4289.	3.7	7
4	A Hierarchical-Structured Impeller with Engineered Pd Nanoparticles Catalyzing Suzuki Coupling Reactions for High-Purity Biphenyl. ACS Applied Materials & Interfaces, 2021, 13, 17429-17438.	8.0	16
5	Threeâ€dimensionalâ€printed holistic reactors with fractal structure for heterogeneous reaction. AICHE Journal, 2021, 67, e17298.	3.6	4
6	Tailoring Photon Emission from CH ₃ NH ₃ PbBr ₃ Quantum Dots through Mn-Substitution. Journal of Physical Chemistry C, 2021, 125, 14311-14316.	3.1	4
7	Copper-Based Integral Catalytic Impeller for the Rapid Catalytic Reduction of 4-Nitrophenol. ACS Omega, 2021, 6, 21784-21791.	3.5	6
8	Bodipy-Containing Porous Microcapsules for Flow Heterogeneous Photocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 38722-38731.	8.0	15
9	Laser-Induced Patterned Photonic Crystal Heterostructure for Multimetal Ion Recognition. ACS Applied Materials & Interfaces, 2021, 13, 4330-4339.	8.0	8
10	Preparation of ZrO ₂ -Based Catalytic Fibers via the Assistance of Microfluidic Chips. Industrial & Engineering Chemistry Research, 2020, 59, 21592-21601.	3.7	3
11	A Centrifugalâ€Forceâ€Assisted Wetâ€Etching Approach toward Topâ€Down Fabrication of Perovskiteâ€Singleâ€Crystalline Thin Films. ChemistrySelect, 2020, 5, 14788-14791.	1.5	2
12	Coral-inspired "nanotentaclization―porous composite gel for efficient removal of Lead(II) from aqueous solution. Materials and Design, 2020, 195, 109072.	7.0	7
13	Scale-up Design of a Fluorescent Fluid Photochemical Microreactor by 3D Printing. ACS Omega, 2020, 5, 7666-7674.	3.5	12
14	Enhanced Mass Transfer and Improved Catalyst Recovery in a Stirred Reactor by Polymeric Ionic Liquids Modified 3D Printed Devices. Advanced Materials Technologies, 2019, 4, 1800515.	5.8	12
15	Mesoporous ZrO ₂ Nanopowder Catalysts for the Synthesis of 5-Hydroxymethylfurfural. ACS Applied Nano Materials, 2019, 2, 5125-5131.	5.0	18
16	Preparation of multifunctional porous carbon electrodes through direct laser writing on a phenolic resin film. Journal of Materials Chemistry A, 2019, 7, 21168-21175.	10.3	32
17	Self-Assembly of Nanoparticles in a Modular Fashion to Prepare Multifunctional Catalysts for Cascade Reactions: From Simplicity to Complexity. ACS Omega, 2019, 4, 1549-1559.	3.5	6
18	Preparation of hollow silver-polymer microspheres with a hierarchical structure for SERS. Applied Surface Science, 2019, 490, 293-301.	6.1	12

LIJING ZHANG

#	Article	IF	CITATIONS
19	3D-printed continuous flow reactor for high yield synthesis of CH ₃ NH ₃ PbX ₃ (X = Br, I) nanocrystals. Journal of Materials Chemistry C, 2019, 7, 9167-9174.	5.5	22
20	Preparation of soft somatosensory-detecting materials <i>via</i> selective laser sintering. Journal of Materials Chemistry C, 2019, 7, 6786-6794.	5.5	8
21	Fluorescent Fluid in 3Dâ€Printed Microreactors for the Acceleration of Photocatalytic Reactions. Advanced Science, 2019, 6, 1900583.	11.2	19
22	Preparation of hybrid chitosan membranes by selective laser sintering for adsorption and catalysis. Materials and Design, 2019, 173, 107780.	7.0	25
23	Preparation of hollow magnetic porous zirconia fibers as effective catalyst carriers for Fenton reaction. Journal of Materials Chemistry A, 2018, 6, 12298-12307.	10.3	30
24	Universal Fluorescence Enhancement Substrate Based on Multiple Heterostructure Photonic Crystal with Superâ€Wide Stopband and Highly Sensitive Cr(VI) Detecting Performance. Advanced Optical Materials, 2018, 6, 1701344.	7.3	22
25	Direct 3D Printing of Reactive Agitating Impellers for the Convenient Treatment of Various Pollutants in Water. Advanced Materials Interfaces, 2018, 5, 1701626.	3.7	18
26	Porous TiO ₂ with large surface area is an efficient catalyst carrier for the recovery of wastewater containing an ultrahigh concentration of dye. RSC Advances, 2018, 8, 3433-3442.	3.6	21
27	Fabrication of multi-functional porous microspheres in a modular fashion for the detection, adsorption, and removal of pollutants in wastewater. Journal of Colloid and Interface Science, 2018, 522, 1-9.	9.4	12
28	A general strategy to fabricate photonic crystal heterostructure with Programmed photonic stopband. Journal of Colloid and Interface Science, 2018, 509, 318-326.	9.4	9
29	Fabrication and Growth Mechanism of Uniform Suspended Perovskite Thin Films. Crystal Growth and Design, 2018, 18, 5770-5779.	3.0	2
30	Fluorescence Enhancement by Photonic Crystal Structure: Universal Fluorescence Enhancement Substrate Based on Multiple Heterostructure Photonic Crystal with Super-Wide Stopband and Highly		

LIJING ZHANG

#	Article	IF	CITATIONS
37	Layerâ€by‣ayer Approach to (2+1)D Photonic Crystal Superlattice with Enhanced Crystalline Integrity. Small, 2015, 11, 4910-4921.	10.0	33
38	Fabrication of colloidal photonic crystal heterostructures free of interface imperfection based on solvent vapor annealing. Journal of Colloid and Interface Science, 2014, 434, 98-103.	9.4	14
39	Highly efficient field emission from large-scale and uniform monolayer graphene sheet supported on patterned ZnO nanorod arrays. Journal of Materials Chemistry C, 2014, 2, 3965.	5.5	18
40	Large-Area and Ordered Sexfoil Pore Arrays by Spherical-Lens Photolithography. ACS Photonics, 2014, 1, 754-760.	6.6	18
41	Hexagonal Crown-Capped Zinc Oxide Micro Rods: Hydrothermal Growth and Formation Mechanism. Inorganic Chemistry, 2013, 52, 10167-10175.	4.0	30
42	Crystal structure refinement and luminescence properties of Ce3+ singly doped and Ce3+/Mn2+ co-doped KBaY(BO3)2 for n-UV pumped white-light-emitting diodes. RSC Advances, 2013, 3, 16534.	3.6	48