Andrew Ooi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7720322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics, 2010, 50, 273-279.	3.9	243
2	Evaporation and dispersion of respiratory droplets from coughing. Indoor Air, 2017, 27, 179-190.	4.3	229
3	CFD analysis of ejector in a combined ejector cooling system. International Journal of Refrigeration, 2005, 28, 1092-1101.	3.4	213
4	Reynolds averaged simulation of unsteady separated flow. International Journal of Heat and Fluid Flow, 2003, 24, 147-156.	2.4	201
5	Cavitation microstreaming patterns in single and multiple bubble systems. Journal of Fluid Mechanics, 2007, 576, 191-233.	3.4	186
6	Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. European Heart Journal, 2019, 40, 3421-3433.	2.2	178
7	A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. Journal of Fluid Mechanics, 2015, 771, 743-777.	3.4	140
8	Reynolds averaged simulation of flow and heat transfer in ribbed ducts. International Journal of Heat and Fluid Flow, 2002, 23, 750-757.	2.4	118
9	Transitions between Turbulent and Laminar Superfluid Vorticity States in the Outer Core of a Neutron Star. Astrophysical Journal, 2006, 651, 1079-1091.	4.5	97
10	Vertical natural convection: application of the unifying theory of thermal convection. Journal of Fluid Mechanics, 2015, 764, 349-361.	3.4	82
11	A fast direct numerical simulation method for characterising hydraulic roughness. Journal of Fluid Mechanics, 2015, 773, 418-431.	3.4	77
12	Global Threeâ€dimensional Flow of a Neutron Superfluid in a Spherical Shell in a Neutron Star. Astrophysical Journal, 2005, 635, 1224-1232.	4.5	70
13	Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. International Journal of Heat and Fluid Flow, 2014, 45, 33-40.	2.4	68
14	Conjugate heat transfer predictions in two-dimensional ribbed passages. International Journal of Heat and Fluid Flow, 2002, 23, 340-345.	2.4	66
15	Passive Acoustic Determination of Wave-Breaking Events and Their Severity across the Spectrum. Journal of Atmospheric and Oceanic Technology, 2006, 23, 599-618.	1.3	56
16	Anisotropy in the sound field generated by a bubble chain. Journal of Sound and Vibration, 2004, 278, 807-823.	3.9	53
17	The Role of Surfactant Headgroup, Chain Length, and Cavitation Microstreaming on the Growth of Bubbles by Rectified Diffusion. Journal of Physical Chemistry C, 2011, 115, 24310-24316.	3.1	53
18	Endothelial Shear Stress andÂPlaqueÂErosion. JACC: Cardiovascular Imaging, 2019, 12, 374-375.	5.3	53

#	Article	IF	CITATIONS
19	Symmetric mode resonance of bubbles attached to a rigid boundary. Journal of the Acoustical Society of America, 2005, 118, 2841-2849.	1.1	47
20	High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovascular Research, 2021, 117, 1974-1985.	3.8	45
21	Time delays in coupled multibubble systems (L). Journal of the Acoustical Society of America, 2005, 117, 47-50.	1.1	43
22	BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies. Journal of Computational Physics, 2009, 228, 7181-7196.	3.8	38
23	Effects of coupling, bubble size, and spatial arrangement on chaotic dynamics of microbubble cluster in ultrasonic fields. Journal of the Acoustical Society of America, 2013, 134, 3425-3434.	1.1	38
24	Changes in the boundary-layer structure at theÂedge of the ultimate regime in vertical natural convection. Journal of Fluid Mechanics, 2017, 825, 550-572.	3.4	37
25	Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. European Heart Journal, 2018, 39, 1602-1609.	2.2	33
26	Analysis of time delay effects on a linear bubble chain system. Journal of the Acoustical Society of America, 2008, 124, 815-826.	1.1	25
27	Chaotic micromixing in open wells using audio-frequency acoustic microstreaming. BioTechniques, 2009, 47, 827-834.	1.8	23
28	Nonlinear dynamic behavior of microscopic bubbles near a rigid wall. Physical Review E, 2012, 85, 066309.	2.1	21
29	Bulk scaling in wall-bounded and homogeneous vertical natural convection. Journal of Fluid Mechanics, 2018, 841, 825-850.	3.4	21
30	On the propagation of acoustic energy in the vicinity of a bubble chain. Journal of Sound and Vibration, 2007, 306, 507-523.	3.9	20
31	Haemodynamic effects of incomplete stent apposition in curved coronary arteries. Journal of Biomechanics, 2017, 63, 164-173.	2.1	20
32	Verification of a Lagrangian particle model for short-range firebrand transport. Fire Safety Journal, 2017, 91, 776-783.	3.1	20
33	Receptivity characteristics of under-expanded supersonic impinging jets. Journal of Fluid Mechanics, 2020, 889, .	3.4	19
34	Computational fluid dynamics study of common stent models inside idealised curved coronary arteries. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 671-681.	1.6	18
35	Cavitation microstreaming and material transport around microbubbles. Physics Procedia, 2010, 3, 427-432.	1.2	17
36	The effect of internal diffusion on an evaporating bio-oil droplet – The chemistry free case. Biomass and Bioenergy, 2010, 34, 1134-1140.	5.7	15

#	Article	IF	CITATIONS
37	Simulation of a Large-Eddy-Break-up Device (LEBU) in a Moderate Reynolds Number Turbulent Boundary Layer. Flow, Turbulence and Combustion, 2017, 98, 445-460.	2.6	15
38	Numerical simulation of the blood flow through the coronary artery stenosis: Effects of varying eccentricity. Computers in Biology and Medicine, 2022, 146, 105672.	7.0	14
39	Eigenmodal resonances of polydisperse bubble systems on a rigid boundary. Journal of the Acoustical Society of America, 2009, 126, 2929-2938.	1.1	13
40	High-order accurate large-eddy simulations of compressible viscous flow in cylindrical coordinates. Computers and Fluids, 2019, 191, 104241.	2.5	13
41	Reversal of flow between serial bifurcation lesions: insights from computational fluid dynamic analysis in a population-based phantom model. EuroIntervention, 2015, 11, e1-e3.	3.2	13
42	A singularity-avoiding moving least squares scheme for two-dimensional unstructured meshes. Journal of Computational Physics, 2009, 228, 5592-5619.	3.8	10
43	Non-Newtonian Endothelial Shear Stress Simulation: Does It Matter?. Frontiers in Cardiovascular Medicine, 2022, 9, 835270.	2.4	9
44	Insonation frequency selection may assist detection and therapeutic delivery of targeted ultrasound contrast agents. Therapeutic Delivery, 2011, 2, 213-222.	2.2	6
45	Aerodynamic Shape Optimization via Global Extremum Seeking. IEEE Transactions on Control Systems Technology, 2015, 23, 2336-2343.	5.2	6
46	Five-year follow-up of underexpanded and overexpanded bioresorbable scaffolds: self-correction and impact on shear stress. EuroIntervention, 2017, 12, 2158-2159.	3.2	6
47	Measurement of microbubble-induced acoustic microstreaming using microparticle image velocimetry. , 2005, 5651, 336.		5
48	Data-driven algebraic models of the turbulent Prandtl number for buoyancy-affected flow near a vertical surface. International Journal of Heat and Mass Transfer, 2021, 179, 121737.	4.8	5
49	Computational fluid dynamic simulations informed by CT and 4D flow MRI for post-surgery aortic dissection – A case study. International Journal of Heat and Fluid Flow, 2022, 96, 108986.	2.4	5
50	The structure of an unstable circular vortex in a background straining flow. Journal of Fluid Mechanics, 2002, 462, 31-42.	3.4	4
51	The interaction of counter-rotating strained vortex pairs with a third vortex. Fluid Dynamics Research, 2009, 41, 035502.	1.3	4
52	Coronary optical coherence tomography-derived virtual fractional flow reserve (FFR): anatomy and physiology all-in-one. European Heart Journal, 2017, 38, 3604-3605.	2.2	4
53	Early strut protrusion and late neointima thickness in the Absorb bioresorbable scaffold: a serial wall shear stress analysis up to five years. EuroIntervention, 2019, 15, e370-e379.	3.2	4
54	Two Dimensional Analysis and Optimization of Hybrid MDCD-TENO Schemes. Journal of Scientific Computing, 2022, 90, 1.	2.3	4

#	Article	IF	CITATIONS
55	Analysis of sound pressure levels generated by nozzle-emitted large bubbles. JASA Express Letters, 2022, 2, 054002.	1.1	4
56	Acoustic microstreaming applied to batch micromixing. , 2005, 6036, 485.		3
57	Computational aeroacoustics using the B-spline collocation method. Comptes Rendus - Mecanique, 2005, 333, 726-731.	2.1	3
58	Batchelor's spectrum from an axisymmetric strained scalar field. Physics of Fluids, 2006, 18, 065111.	4.0	3
59	A new perspective on spectral analysis of numerical schemes. International Journal for Numerical Methods in Fluids, 2012, 68, 467-482.	1.6	3
60	Is there a need for fully converged CFD solutions? Global extremum seeking applied to aerodynamic shape optimisation. , 2013, , .		3
61	The minimal channel: a fast and direct method for characterising roughness. Journal of Physics: Conference Series, 2016, 708, 012010.	0.4	3
62	Optimization Framework for Codesign of Controlled Aerodynamic Systems. AIAA Journal, 2016, 54, 3149-3159.	2.6	3
63	Numerical Study of Incomplete Stent Apposition Caused by Deploying Undersized Stent in Arteries With Elliptical Cross Sections. Journal of Biomechanical Engineering, 2019, 141, .	1.3	3
64	Two Dimensional Analysis of Hybrid Spectral/Finite Difference Schemes for Linearized Compressible Navier–Stokes Equations. Journal of Scientific Computing, 2021, 87, 1.	2.3	3
65	High endothelial shear stress and stress gradient at plaque erosion persist up to 12Âmonths. International Journal of Cardiology, 2022, 357, 1-7.	1.7	3
66	Investigating Shear-Layer Instabilities in Supersonic Impinging Jets Using Dual-Time Particle Image Velocimetry. AIAA Journal, 2022, 60, 3749-3759.	2.6	3
67	Measurement of pressure on a surface using bubble acoustic resonances. Measurement Science and Technology, 2010, 21, 027002.	2.6	2
68	Theoretical and experimental evaluation of microstreaming created by a single microbubble: Application to sonoporation. , 2011, , .		2
69	Quantitative Guidelines for the Prediction of Ultrasound Contrast Agent Destruction During Injection. Ultrasound in Medicine and Biology, 2013, 39, 1838-1847.	1.5	2
70	Computational particle tracking to model platelet behaviour near malapposed coronary stent struts. European Heart Journal, 2019, 40, 1890-1891.	2.2	2
71	Measurement and analysis of the shear layer instabilities in supersonic impinging jets. , 2020, , .		2
72	Characteristics of a buoyant plume in a channel with cross-flow. International Journal of Heat and Fluid Flow, 2022, 93, 108899.	2.4	2

#	Article	IF	CITATIONS
73	Numerical Modelling of Flow and Heat Transfer in the Rotating Disc Cavities of a Turboprop Engine. Annals of the New York Academy of Sciences, 2006, 934, 497-504.	3.8	1
74	Adjoint assisted geometry design of a feedback controlled missile. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 451-456.	0.4	1
75	Evolution of a wall-attached buoyant plume in confined boxes: Direct numerical simulations, entrainment coefficient and an integral model. International Journal of Heat and Fluid Flow, 2021, 90, 108824.	2.4	1
76	Calculation of scalar structure functions from a vortex model of turbulent passive scalar transport. Physics of Fluids, 2008, 20, 025108.	4.0	0
77	Nonlinear oscillations of air bubbles near and on a rigid boundary with time delay effects. , 2008, , .		0
78	An improved interpolation scheme for finite volume simulations on unstructured meshes. Mathematics of Computation, 2012, 82, 803-830.	2.1	0
79	Decomposition of Radiating and Non-Radiating Linear Fluctuating Components in Compressible Flows. , 2016, , 388-396.		0
80	Sensitivity analysis of FDA´s benchmark nozzle regarding in vitro imperfections - Do we need asymmetric CFD benchmarks?. Current Directions in Biomedical Engineering, 2020, 6, 78-81.	0.4	0