Stephanie A Shore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7720279/publications.pdf Version: 2024-02-01

STERHANIE & SHORE

#	Article	IF	CITATIONS
1	Interleukin-17–producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Medicine, 2014, 20, 54-61.	15.2	515
2	Unjamming and cell shape in the asthmatic airwayÂepithelium. Nature Materials, 2015, 14, 1040-1048.	13.3	484
3	Obesity and asthma: Possible mechanisms. Journal of Allergy and Clinical Immunology, 2008, 121, 1087-1093.	1.5	388
4	Effect of leptin on allergic airway responses in mice. Journal of Allergy and Clinical Immunology, 2005, 115, 103-109.	1.5	296
5	An Official American Thoracic Society Workshop Report: Obesity and Asthma. Proceedings of the American Thoracic Society, 2010, 7, 325-335.	3.5	290
6	Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. Journal of Allergy and Clinical Immunology, 2006, 118, 389-395.	1.5	283
7	Obesity and asthma. , 2006, 110, 83-102.		226
8	Obesity, smooth muscle, and airway hyperresponsiveness. Journal of Allergy and Clinical Immunology, 2005, 115, 925-927.	1.5	203
9	Obesity and Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 963-968.	2.5	183
10	Selected Contribution: Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. Journal of Applied Physiology, 2001, 91, 986-994.	1.2	167
11	Obesity and asthma: lessons from animal models. Journal of Applied Physiology, 2007, 102, 516-528.	1.2	149
12	IL-13 and IL-4 cause eotaxin release in human airway smooth muscle cells: a role for ERK. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L847-L853.	1.3	146
13	Obesity, airway hyperresponsiveness, and inflammation. Journal of Applied Physiology, 2010, 108, 735-743.	1.2	143
14	Allergic Airway Responses in Obese Mice. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 650-658.	2.5	133
15	Increased pulmonary responses to acute ozone exposure in obese db/db mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L856-L865.	1.3	126
16	Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone-induced pulmonary inflammation. Journal of Applied Physiology, 2008, 104, 1727-1735.	1.2	123
17	A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. Journal of Allergy and Clinical Immunology, 2018, 142, 1469-1478.e2.	1.5	121
18	CXCR2 is essential for maximal neutrophil recruitment and methacholine responsiveness after ozone exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L61-L67.	1.3	85

#	Article	IF	CITATIONS
19	Adiponectin, Leptin, and Resistin in Asthma: Basic Mechanisms through Population Studies. Journal of Allergy, 2013, 2013, 1-15.	0.7	82
20	Obesity and severe asthma. Allergology International, 2019, 68, 135-142.	1.4	82
21	Obesity and asthma: implications for treatment. Current Opinion in Pulmonary Medicine, 2007, 13, 56-62.	1.2	81
22	IL-13 and IL-4 promote TARC release in human airway smooth muscle cells: role of IL-4 receptor genotype. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L907-L914.	1.3	80
23	Augmented responses to ozone in obese carboxypeptidase E-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R126-R133.	0.9	77
24	A Brief Targeted Review of Susceptibility Factors, Environmental Exposures, Asthma Incidence, and Recommendations for Future Asthma Incidence Research. Environmental Health Perspectives, 2006, 114, 634-640.	2.8	75
25	Regulation of Î ² -adrenergic responses in airway smooth muscle. Respiratory Physiology and Neurobiology, 2003, 137, 179-195.	0.7	74
26	Role of interleukin-6 in murine airway responses to ozone. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L390-L397.	1.3	74
27	Obesity and Asthma: Microbiome–Metabolome Interactions. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 609-617.	1.4	73
28	Pulmonary Inflammation Induced by Subacute Ozone Is Augmented in Adiponectin-Deficient Mice: Role of IL-17A. Journal of Immunology, 2012, 188, 4558-4567.	0.4	63
29	Selected Contribution: Synergism between TNF-α and IL-1β in airway smooth muscle cells: implications for β-adrenergic responsiveness. Journal of Applied Physiology, 2001, 91, 1467-1474.	1.2	59
30	Effects of cytokines on contractile and dilator responses of airway smooth muscle. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 859-866.	0.9	59
31	Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D. Frontiers in Immunology, 2014, 5, 440.	2.2	55
32	Prostanoids mediate IL-1β-induced β-adrenergic hyporesponsiveness in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L491-L501.	1.3	52
33	Obesity and asthma: cause for concern. Current Opinion in Pharmacology, 2006, 6, 230-236.	1.7	52
34	Interleukin-13 and Interleukin-4 Induce Vascular Endothelial Growth Factor Release from Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 213-218.	1.4	52
35	p38 MAP kinase regulates IL-1β responses in cultured airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L932-L941.	1.3	51
36	The Microbiome Regulates Pulmonary Responses to Ozone in Mice. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 346-354.	1.4	49

#	Article	IF	CITATIONS
37	Sex Differences in Pulmonary Responses to Ozone in Mice. Role of the Microbiome. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 198-208.	1.4	49
38	Effect of obesity on pulmonary inflammation induced by acute ozone exposure: role of interleukin-6. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1013-L1020.	1.3	46
39	Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness. Journal of Applied Physiology, 2004, 97, 249-259.	1.2	44
40	Obesity and airway responsiveness: Role of TNFR2. Pulmonary Pharmacology and Therapeutics, 2013, 26, 444-454.	1.1	44
41	No effect of metformin on the innate airway hyperresponsiveness and increased responses to ozone observed in obese mice. Journal of Applied Physiology, 2008, 105, 1127-1133.	1.2	43
42	Direct effects of Th2 cytokines on airway smooth muscle. Current Opinion in Pharmacology, 2004, 4, 235-240.	1.7	40
43	Role of ERK MAP kinases in responses of cultured human airway smooth muscle cells to IL-1β. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L943-L951.	1.3	39
44	Impact of Adiponectin Deficiency on Pulmonary Responses to Acute Ozone Exposure in Mice. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 487-497.	1.4	39
45	Pulmonary responses to subacute ozone exposure in obese vs. lean mice. Journal of Applied Physiology, 2009, 107, 1445-1452.	1.2	38
46	Role of the Adiponectin Binding Protein, T-Cadherin (Cdh13), in Allergic Airways Responses in Mice. PLoS ONE, 2012, 7, e41088.	1.1	38
47	Type I Interleukin-1 Receptor Is Required for Pulmonary Responses to Subacute Ozone Exposure in Mice. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 477-484.	1.4	36
48	β-Agonists and asthma: too much of a good thing?. Journal of Clinical Investigation, 2003, 112, 495-497.	3.9	35
49	Microbiota Contribute to Obesity-related Increases in the Pulmonary Response to Ozone. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 702-712.	1.4	34
50	Interleukin-6 family cytokines: signaling and effects in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L1225-L1232.	1.3	33
51	Augmented Responses to Ozone in Obese Mice Require IL-17A and Gastrin-Releasing Peptide. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 341-351.	1.4	32
52	Rat alveolar macrophages express preprotachykinin gene-I mRNA-encoding tachykinins. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L1073-L1081.	1.3	31
53	Obesity and asthma: location, location, location. European Respiratory Journal, 2013, 41, 253-254.	3.1	27
54	γδT Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice. PLoS ONE, 2015, 10, e0131236.	1.1	27

#	Article	IF	CITATIONS
55	Obesity, Asthma, and the Microbiome. Physiology, 2016, 31, 108-116.	1.6	26
56	Airway Smooth Muscle in Asthma — Not Just More of the Same. New England Journal of Medicine, 2004, 351, 531-532.	13.9	25
57	Î ³ δT Cells Are Required for Pulmonary IL-17A Expression after Ozone Exposure in Mice: Role of TNFα. PLoS ONE, 2014, 9, e97707.	1.1	25
58	ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L736-L746.	1.3	25
59	Cytokine regulation of \hat{l}^2 -adrenergic responses in airway smooth muscle. Journal of Allergy and Clinical Immunology, 2002, 110, S255-S260.	1.5	24
60	Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L508-L520.	1.3	22
61	Abrogation of airway hyperresponsiveness but not inflammation by rho kinase insufficiency. Clinical and Experimental Allergy, 2015, 45, 457-470.	1.4	22
62	Glucocorticoids ablate IL-1β-induced β-adrenergic hyporesponsiveness in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L932-L942.	1.3	21
63	Onset of obesity in carboxypeptidase E-deficient mice and effect on airway responsiveness and pulmonary responses to ozone. Journal of Applied Physiology, 2010, 108, 1812-1819.	1.2	21
64	Mechanistic Basis for Obesity-related Increases in Ozone-induced Airway Hyperresponsiveness in Mice. Annals of the American Thoracic Society, 2017, 14, S357-S362.	1.5	21
65	Effect of IL-1Î ² on CRE-dependent gene expression in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L1239-L1246.	1.3	19
66	The interleukin-33 receptor contributes to pulmonary responses to ozone in male mice: role of the microbiome. Respiratory Research, 2019, 20, 197.	1.4	19
67	Role of tachykinins in airway responses to ozone in rats. Journal of Applied Physiology, 1998, 85, 442-450.	1.2	18
68	Pulmonary responses to acute ozone exposure in fasted mice: effect of leptin administration. Journal of Applied Physiology, 2007, 102, 149-156.	1.2	18
69	Impact of aging on pulmonary responses to acute ozone exposure in mice: role of TNFR1. Inhalation Toxicology, 2011, 23, 878-888.	0.8	17
70	The Metabolic Response to Ozone. Frontiers in Immunology, 2019, 10, 2890.	2.2	17
71	Sex Differences in the Impact of Dietary Fiber on Pulmonary Responses to Ozone. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 503-512.	1.4	17
72	Role of TNFR1 in the innate airway hyperresponsiveness of obese mice. Journal of Applied Physiology, 2012, 113, 1476-1485.	1.2	14

#	Article	IF	CITATIONS
73	The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 283-291.	1.4	14
74	Early life microbiome perturbation alters pulmonary responses to ozone in male mice. Physiological Reports, 2020, 8, e14290.	0.7	14
75	Recovery of an Epitope Recognized by a Novel Monoclonal Antibody from Airway Lavage during Experimental Induction of Chronic Bronchitis. American Journal of Respiratory Cell and Molecular Biology, 1990, 2, 453-462.	1.4	13
76	Impact of Adiponectin Overexpression on Allergic Airways Responses in Mice. Journal of Allergy, 2013, 2013, 1-13.	0.7	13
77	Role of the Adiponectin Binding Protein, T-Cadherin (cdh13), in Pulmonary Responses to Subacute Ozone. PLoS ONE, 2013, 8, e65829.	1.1	13
78	Androgens augment pulmonary responses to ozone in mice. Physiological Reports, 2019, 7, e14214.	0.7	12
79	Ozone-induced changes in the serum metabolome: Role of the microbiome. PLoS ONE, 2019, 14, e0221633.	1.1	12
80	Environmental Perturbations: Obesity. , 2011, 1, 263-282.		11
81	IL-33, diet-induced obesity, and pulmonary responses to ozone. Respiratory Research, 2020, 21, 98.	1.4	9
82	Role of capsaicin-sensitive neurons in histamine-induced luminal liquid in small airways. Clinical and Experimental Allergy, 1991, 21, 37-41.	1.4	8
83	Regulation of IL-17A expression in mice following subacute ozone exposure. Journal of Immunotoxicology, 2016, 13, 428-438.	0.9	6
84	Gut microbiota from androgenâ€altered donors alter pulmonary responses to ozone in female mice. Physiological Reports, 2020, 8, e14584.	0.7	1
85	Airway Smooth Muscle Mechanics, Remodeling and Proliferation: Effects of Aicar and Metformin. , 2006, , .		0
86	Asthma and COPD. , 2009, , 99-109.		0
87	Effects of Obesity on Airway Responsiveness. , 2013, , 21-45.		0

88 Obesity and asthma: What have we learned from animal models?. , 2019, , 111-142.