
Haiyong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7719364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO ₂ catalysts: the morphology effect of CeO ₂ . Catalysis Science and Technology, 2019, 9, 1570-1580.	4.1	77
2	Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Co3O4 catalyst by controlled reduction. Journal of Energy Chemistry, 2019, 30, 34-41.	12.9	70
3	Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Alloyed Cuâ^'Ni Encapsulated in Biochar Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 19556-19569.	6.7	56
4	Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Ni Supported on Zirconium Phosphate Catalysts. ACS Omega, 2018, 3, 7407-7417.	3.5	53
5	Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. ChemSusChem, 2019, 12, 3977-3987.	6.8	49
6	Selective C ₃ -C ₄ Keto-Alcohol Production from Cellulose Hydrogenolysis over Ni-WO <i>_x</i> /C Catalysts. ACS Catalysis, 2020, 10, 10646-10660.	11.2	39
7	Selective Conversion of Cellulose to Hydroxyacetone and 1â€Hydroxyâ€⊋â€Butanone with Sn–Ni Bimetallic Catalysts. ChemSusChem, 2019, 12, 2154-2160.	6.8	37
8	Ultrafast Glycerol Conversion to Lactic Acid over Magnetically Recoverable Ni–NiO <i>_x</i> @C Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 9912-9925.	3.7	26
9	Direct Hydrogenolysis of Cellulose into Methane under Mild Conditions. Energy & Fuels, 2018, 32, 11529-11537.	5.1	18
10	Selective (ligno) cellulose hydrogenolysis to ethylene glycol and propyl monophenolics over Ni–W@C catalysts. Cellulose, 2020, 27, 7591-7605.	4.9	18
11	Tandem Conversion of Fructose to 2,5-Dimethylfuran with the Aid of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 16026-16040.	6.7	16
12	Selective Cellulose Hydrogenolysis to 2,5-Hexanedione and 1-Hydroxy-2-hexanone Using Ni@NC Combined with H ₃ PO ₄ . ACS Sustainable Chemistry and Engineering, 2021, 9, 15394-15405.	6.7	16
13	Catalytic Production of Oxygenated and Hydrocarbon Chemicals From Cellulose Hydrogenolysis in Aqueous Phase. Frontiers in Chemistry, 2020, 8, 333.	3.6	14
14	A mechanism study on the efficient conversion of cellulose to acetol over Sn–Co catalysts with low Sn content. Green Chemistry, 2020, 22, 6579-6587.	9.0	13
15	5-Hydroxymethylfurfural Hydrodeoxygenation Coupled with Water-Gas Shift Reaction for 2,5-Dimethylfuran Production over Au/ZrO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 6355-6369.	6.7	13
16	Selective yields of furfural and hydroxymethylfurfural from glucose in tetrahydrofuran over HÎ ² zeolite. RSC Advances, 2018, 8, 24534-24540.	3.6	12
17	Hydrogenolysis of biomass-derived sorbitol over La-promoted Ni/ZrO ₂ catalysts. RSC Advances, 2020, 10, 3993-4001.	3.6	10
18	Recent Progress in 5-Hydroxymethylfurfural Catalytic Oxidation to 2,5-Furandicarboxylic Acid. Current Organic Chemistry, 2021, 25, 404-416.	1.6	8

HAIYONG WANG

#	Article	IF	CITATIONS
19	Selective 5-Hydroxymethylfurfural Hydrogenolysis to 2,5-Dimethylfuran over Bimetallic Pt-FeOx/AC Catalysts. Catalysts, 2021, 11, 915.	3.5	7
20	Influence of Impregnation Processes on Ruthenium–Molybdenum Carbon Catalysts for Selective Hydrodeoxygenation of Biomassâ€Derived Sorbitol into Renewable Alkanes. Energy Technology, 2018, 6, 1763-1770.	3.8	6
21	Selectively chemo-catalytic hydrogenolysis of cellulose to EG and EtOH over porous SiO2 supported tungsten catalysts. Catalysis Today, 2023, 407, 89-95.	4.4	6
22	Efficient production of ethylene glycol from cellulose over Co@C catalysts combined with tungstic acid. Sustainable Energy and Fuels, 2022, 6, 2602-2612.	4.9	6
23	Homogeneous Baseâ€Free Oxidation of 5â€Hydroxymethyfufural to 2, 5â€Furandicarboxylic Acid over Au/Mg(OH) ₂ Catalysts. ChemistrySelect, 2020, 5, 12785-12790.	1.5	5
24	Selective Hydrogenolysis of 5â€Hydroxymethylfurfural to 2â€Hexanol over Au/ZrO ₂ Catalysts. ChemSusChem, 2022, 15, .	6.8	5
25	The Protection of Câ^'O Bond of Pine Lignin in Different Organic Solvent Systems. ChemistrySelect, 2020, 5, 3850-3858.	1.5	4
26	Catalytic Hydrogenolysis of Biomass-derived Polyhydric Compounds to C2–C3 Small- Molecule Polyols: A Review. Current Organic Chemistry, 2019, 23, 2180-2189.	1.6	4
27	Hydrocarbon Distribution of Cellulose Hydrogenolysis over Ru–MoOx/C Combined with HZSM-5. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	4
28	Comparative study on the hydrogenolysis performance of solid residues from different bamboo pretreatments. Bioresource Technology, 2022, 352, 127095.	9.6	4
29	Efficient conversion of lactic acid to alanine over noble metal supported on Ni@C catalysts. RSC Advances, 2022, 12, 16847-16859.	3.6	4
30	Tungsten oxide decorated silica-supported iridium catalysts combined with HZSM-5 toward the selective conversion of cellulose to C6 alkanes. Bioresource Technology, 2022, 347, 126403.	9.6	3
31	Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. ChemSusChem, 2019, 12, 3881-3881.	6.8	0