Choon-Woo Nahm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7719234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of sintering temperature on nonlinearity and surge degradation characteristics of Mn3O4/Nb2O5/Er2O3-doped ZnO–V2O5-based varistors. Springer Series in Emerging Cultural Perspectives in Work, Organizational, and Personnel Studies, 2020, 57, 65-72.	1.5	3
2	Effects of Low-Temperature Sintering on Varistor Properties and Stability of VMCDNB-Doped Zinc Oxide Ceramics. Journal of the Korean Ceramic Society, 2019, 56, 84-90.	1.1	1
3	Doping Effect of Yb ₂ O ₃ on Varistor Properties of ZnO-V ₂ O ₅ -MnO ₂ -Nb ₂ O ₅ Ceramic Semiconductors. Korean Journal of Materials Research, 2019, 29, 586-591.	0.1	0
4	Effect of Yb2O3 addition on varistor properties and aging characteristics of ZnO–V2O5–Mn3O4 system. Journal of Materials Science: Materials in Electronics, 2018, 29, 2958-2965.	1.1	11
5	Major Effects on Non-ohmic Properties and Aging Stress Behavior of ZPCCD Semiconducting Varistors with Er2O3 Doping Changes. Transactions on Electrical and Electronic Materials, 2018, 19, 330-336.	1.0	6
6	Yttrium Doping Effect on Varistor Properties of Zinc-Vanadium-Based Ceramics. Journal of the Korean Ceramic Society, 2018, 55, 504-509.	1.1	2
7	Sintering effect on varistor properties and degradation behavior of ZVMB varistor ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 17063-17069.	1.1	7
8	Effect of Bi2O3 doping on microstructure and electrical properties of ZnO–V2O5–Mn3O4 semiconducting ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 903-908.	1.1	5
9	Sintering temperature dependence on microstructure and non-ohmic properties of ZVMND ceramic semiconductors. Journal of Materials Science: Materials in Electronics, 2016, 27, 9520-9525.	1.1	4
10	Zinc oxide-praseodymia semiconducting varistors having a powerful surge suppression capability. Microelectronics Reliability, 2015, 55, 2299-2305.	0.9	4
11	Effect of Dy2O3 doping on microstructure, electrical and dielectric properties of ZnO–V2O5-based varistor ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 10217-10224.	1.1	4
12	Microstructure and electrical properties of ZnO–Pr6O11–Bi2O3-based varistor ceramics with sintering changes. Journal of Materials Science: Materials in Electronics, 2015, 26, 8380-8385.	1.1	6
13	Sintering effect on electrical properties and aging behavior of quaternary ZnO–V2O5–Mn3O4–Nb2O5 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 168-175.	1.1	8
14	Degradation behavior by DC-accelerated and pulse-current stress in Co/Cr/Y/Al/Ni co-doped ZnO–PrO1.83-based varistors. Microelectronics Reliability, 2015, 55, 565-571.	0.9	4
15	Varistor characteristics of ZnO/V2O5/MnO2/Nb2O5 semiconducting ceramics with Tb4O7 addition. Journal of Materials Science: Materials in Electronics, 2015, 26, 4144-4151.	1.1	13
16	Effect of sintering temperature on varistor properties of Zn–V–Mn–Nb–Tb oxide ceramics. Ceramics International, 2015, 41, 5196-5199.	2.3	10
17	Microstructure and Varistor Properties of ZVMND Ceramics with Sintering Temperature. Transactions on Electrical and Electronic Materials, 2015, 16, 221-225.	1.0	1
18	Sintering Effect on Clamping Characteristics and Pulse Aging Behavior of ESD-Sensitive V2O5/Mn3O4/Nb2O5Codoped Zinc Oxide Varistors. Transactions on Electrical and Electronic Materials, 2015, 16, 308-311.	1.0	1

#	Article	IF	CITATIONS
19	Aging characteristics of ZnO–PrO1.83-based semiconducting varistors for surge protection reliability. Microelectronics Reliability, 2014, 54, 2417-2422.	0.9	7
20	Aging characteristics of ZnO–V2O5-based varistors for surge protection reliability. Microelectronics Reliability, 2014, 54, 2836-2842.	0.9	9
21	Sintering time dependence of varistor properties and aging behavior in Co/Cr/La/Y co-doped ZnO–PrO1.83-based ceramics. Ceramics International, 2014, 40, 12561-12565.	2.3	2
22	Nonohmic properties of V/Mn/Nb/Gd co-doped zinc oxide semiconducting varistors with low-temperature sintering process. Materials Science in Semiconductor Processing, 2014, 23, 58-62.	1.9	6
23	Sintering effect on electrical properties and pulse aging behavior of (V2O5-Mn3O4-Er2O3)-doped zinc oxide varistor ceramics. Journal of Rare Earths, 2014, 32, 29-36.	2.5	7
24	Non-ohmic effect and pulse aging behavior of V/Mn/Co/Bi/Dy co-doped ZnO semiconducting varistors with sintering processing. Materials Science in Semiconductor Processing, 2014, 26, 455-459.	1.9	3
25	Microstructure and Varistor Properties of ZPCCAE Ceramics with Erbium. Transactions on Electrical and Electronic Materials, 2014, 15, 213-216.	1.0	2
26	Varistor Properties and Aging Behavior of V/Mn/Co/ La/Dy Co-doped Zinc Oxide Ceramics Modified with Various Additives. Transactions on Electrical and Electronic Materials, 2014, 15, 284-289.	1.0	0
27	Effect of Er2O3Content on Nonlinear Properties and Impulse Clamping Characteristics of Pr/Co/Cr/Al Co-doped Zinc Oxide Ceramics. Journal of the Korean Ceramic Society, 2014, 51, 612-617.	1.1	Ο
28	Degradation Characteristics of Pr/Co/Cr/Er Co-doped Zinc Oxide Varistors by Impulse Current Stress. Transactions on Electrical and Electronic Materials, 2014, 15, 348-352.	1.0	1
29	Microstructure, electrical and dielectric properties, and impulse clamping characteristics of ZnO–V2O5–Mn3O4 semiconducting ceramics modified with Er2O3. Journal of Materials Science: Materials in Electronics, 2013, 24, 4129-4136.	1.1	7
30	Major effects on varistor properties and impulse aging behavior of Zn–V–Mn–Co–Dy ceramics with small sintering changes. Journal of Materials Science: Materials in Electronics, 2013, 24, 3001-3008.	1.1	3
31	Improvement of aging characteristics of (Mn, Nb, Er)-doped ZnO–V2O5-based varistor ceramics by small sintering changes. Journal of Materials Science: Materials in Electronics, 2013, 24, 2228-2233.	1.1	2
32	Excellent DC aging behavior of ZnO–Pr 6O11–CoO–Cr2O3–Y2O3 ceramics modified with Tb4O7. Ceramics International, 2013, 39, 4701-4705.	2.3	2
33	Effect of gadolinia addition on varistor characteristics of vanadium oxide–doped zinc oxide ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 4839-4846.	1.1	10
34	Effect of erbium on varistor characteristics of vanadium oxide-doped zinc oxide ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 27-35.	1.1	19
35	Varistor characteristics of vanadium oxide-doped zinc oxide ceramics modified with bismuth oxide. Journal of Materials Science: Materials in Electronics, 2013, 24, 70-78.	1.1	6
36	Effect of sintering temperature on electrical properties, dielectric characteristics, and aging behavior of ZnO–V2O5-based varistor ceramics modified with Bi2O3. Journal of Materials Science: Materials in Electronics, 2013, 24, 118-124.	1.1	7

#	Article	IF	CITATIONS
37	Non-ohmic properties and impulse aging behavior of quaternary ZnO–V2O5–Mn3O4–Er2O3 semiconducting varistors with sintering processing. Materials Science in Semiconductor Processing, 2013, 16, 1308-1315.	1.9	11
38	Characteristics of ZnOî—,V2O5î—,MnO2î—,Nb2O5î—,Er2O3 semiconducting varistors with sintering processing. Materials Science in Semiconductor Processing, 2013, 16, 778-785.	1.9	10
39	Clamping characteristics and pulse aging behavior of ZnO–V2O5–Mn3O4 varistor ceramics modified with Nb2O5. Ceramics International, 2013, 39, 3417-3421.	2.3	6
40	Nonlinear behavior of Tb4O7-modified ZnO-Pr6O11-based ceramics with high breakdown field. Journal of Rare Earths, 2013, 31, 276-280.	2.5	14
41	Major effects on electrical properties of ZnO–V2O5–MnO2–Nb2O5 ceramics with small Gd2O3 doping changes. Journal of Alloys and Compounds, 2013, 578, 132-135.	2.8	17
42	Low-temperature sintering effect on varistor properties of ZnO–V2O5–MnO2–Nb2O5–Bi2O3 ceramics. Ceramics International, 2013, 39, 2117-2121.	2.3	17
43	Major effect on electrical properties and aging behavior of ZnO–Pr6O11-based varistor ceramics with small In2O3 doping changes. Journal of Materials Science: Materials in Electronics, 2012, 23, 1715-1721.	1.1	3
44	Electrical and dielectric characteristics of erbium-added ZnO–V2O5-based varistor ceramics. Ceramics International, 2012, 38, 6651-6658.	2.3	15
45	Sintering effect on ageing behavior of rare earths (Pr6O11-Er2O3-Y2O3)-doped ZnO varistor ceramics. Journal of Rare Earths, 2012, 30, 1028-1033.	2.5	16
46	Major effects on varistor properties of ZnO–V2O5–MnO2–Nb2O5–Er2O3 ceramics with sintering changes. Ceramics International, 2012, 38, 2593-2596.	2.3	17
47	Degradation behavior against surge stress of Zn–Pr–Co–Cr–Y–Er varistor ceramics modified with Er2O3. Ceramics International, 2012, 38, 3489-3497.	2.3	9
48	Nb2O5 doping effect on electrical properties of ZnO–V2O5–Mn3O4 varistor ceramics. Ceramics International, 2012, 38, 5281-5285.	2.3	22
49	Influence of <scp><scp>Bi</scp></scp> 2 <scp><scp>O</scp></scp> 3 Doping on Microstructure and Electrical Properties of <scp><scp>ZnO</scp></scp> â€" <scp><scp>V</scp></scp> 222	u <mark>19</mark> ub>– <s< td=""><td>cp⁶<scp>M</scp></td></s<>	cp ⁶ <scp>M</scp>
50	Microstructure and varistor properties of ZnO–V2O5–MnO2 ceramics with Ta2O5 addition. Journal of Physics and Chemistry of Solids, 2012, 73, 834-838.	1.9	10
51	Effect of sintering process on electrical properties and ageing behavior of ZnO–V2O5–MnO2–Nb2O5 varistor ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 457-463.	1.1	17
52	Microstructure and Electrical Properties of ZPCCYT Varistor Ceramics. Transactions on Electrical and Electronic Materials, 2012, 13, 262-265.	1.0	0
53	Sintering effect on electrical properties of ZnO–V2O5–MnO2–Nb2O5 ceramics. Journal of Alloys and Compounds, 2011, 509, L314-L317.	2.8	18
54	Impulse Aging Behavior Against of Zn–Pr–Co–Cr–Dy Varistors with Cobalt Addition. Journal of the American Ceramic Society, 2011, 94, 328-331.	1.9	9

#	Article	IF	CITATIONS
55	Impulse Aging Behavior of ZnO-V2O5-Based Varistors withNb2O5 Addition. Journal of the American Ceramic Society, 2011, 94, 1305-1308.	1.9	7
56	Sintering Effect on Pulse Aging Behavior of Zn-V-Mn-Co-Nb Varistors. Journal of the American Ceramic Society, 2011, 94, 2269-2272.	1.9	10
57	<pre><scp><scp>Er</scp>₂<scp>O</scp>₃</scp> Doping Effect on Electrical Properties of <scp><scp>ZnO</scp>â€"<scp>V</scp>₂<scp>O</scp>₅â€"<scp>MnO</scp>₂2<scp>Qalleteeteeteeteeteeteeteeteeteeteeteeteet</scp></scp></pre>	< †s ub>‑	'∠scp>Nb
58	Varistor properties of ZnO-Pr6O11-CoO-Cr2O3-Y2O3-In2O3 ceramics. Materials Letters, 2011, 65, 1299-1301.	1.3	13
59	Microstructure, electrical properties, and aging behavior of ZnO–Pr6O11–CoO–Cr2O3–Y2O3–Er2O3 varistor ceramics. Ceramics International, 2011, 37, 3049-3054.	2.3	21
60	Novel pulse ageing characteristics of ZPCCE varistor ceramics. Ceramics International, 2011, 37, 3781-3784.	2.3	2
61	Effect of aluminum doping on electrical and dielectric aging behavior against current impulse of ZPCCY-based varistors. Journal of Materials Science: Materials in Electronics, 2011, 22, 77-83.	1.1	2
62	DC accelerated aging behavior of Co–Dy–Nb doped Zn–V–M-based varistors with sintering process. Journal of Materials Science: Materials in Electronics, 2011, 22, 444-451.	1.1	22
63	Varistor properties and aging behavior of ZnO-V2O5-Mn3O4 ceramics with sintering process. Journal of Materials Science: Materials in Electronics, 2011, 22, 1010-1015.	1.1	9
64	Effect of Dy2O3 addition on microstructure, electrical properties, and aging behavior of ZnO–V2O5–MnO2–CoO varistor ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 1674-1680.	1.1	7
65	Pulse aging behavior of ZnO–Pr6O11–CoO–Cr2O3–Dy2O3 varistor ceramics with sintering time. Ceramics International, 2011, 37, 1409-1414.	2.3	10
66	Impulse degradation behavior of Co–Cr–Al–Y-doped ZnO–Pr6O11-based varistors with sintering temperature. Ceramics International, 2011, 37, 265-271.	2.3	4
67	Impulse Degradation Behavior of ZPCCYE Varistors with Y ₂ O ₃ /Er ₂ O ₃ Ratio. Transactions on Electrical and Electronic Materials, 2011, 12, 213-217.	1.0	0
68	Electrical behavior against current impulse in ZnO–Pr6O11-based varistor ceramics with terbium addition. Ceramics International, 2010, 36, 1495-1501.	2.3	25
69	Effect of aluminum addition on electrical properties, dielectric characteristics, and its stability of (Pr, Co, Cr, Y)-added zinc oxide-based varistors. Bulletin of Materials Science, 2010, 33, 239-245.	0.8	4
70	Influence of Nb addition on microstructure, electrical, dielectric properties, and aging behavior of MnCoDy modified Zn–V-based varistors. Journal of Materials Science: Materials in Electronics, 2010, 21, 540-547.	1.1	25
71	Highly stable nonlinear behavior against impulse current of ZnO–Pr6O11–CoO–Cr2O3–Y2O3 varistors. Materials Letters, 2010, 64, 2631-2634.	1.3	6
72	Al doping effect on electrical and dielectric aging behavior against impulse surge in ZPCCYA-based varistors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 170. 123-128.	1.7	23

#	Article	IF	CITATIONS
73	Effect of dopant (Al, Nb, Bi, La) on varistor properties of ZnO–V2O5–MnO2–Co3O4–Dy2O3 ceramics. Ceramics International, 2010, 36, 1109-1115.	2.3	46
74	Sintering Temperature Dependence of Varistor Properties and Aging Behavior in ZnO–Pr ₆ 0 ₁₁ –CoO–Cr ₂ 0 ₃ –Al ₂ O <sub Ceramics. Journal of the American Ceramic Society, 2010, 93, 2297-2304.</sub 	> 3.9 /sub>á	i€'Y ₂
75	Major Effects on Impulse Aging Behavior of ZnO–Pr ₆ O ₁₁ –CoO–Cr ₂ O ₃ –Er ₂ O <sub Varistor Ceramics with Small Sintering Changes. Journal of the American Ceramic Society, 2010, 93, 3056-3059.</sub 	>3	15
76	Effect of sintering temperature on microstructure and electrical properties of ZVMCDN ceramics. Materials Letters, 2010, 64, 830-832.	1.3	7
77	Microstructure, Electrical Properties, and Accelerated Aging Behavior of Er-Added ZPCC-YE Varistors. Transactions on Electrical and Electronic Materials, 2010, 11, 216-221.	1.0	0
78	Effect of sintering temperature on varistor properties and aging characteristics of ZnO–V2O5–MnO2 ceramics. Ceramics International, 2009, 35, 2679-2685.	2.3	44
79	Effect of cooling rate on electrical properties, impulse surge and dc-accelerated aging behaviors of ZPCCD-based varistors. Journal of Materials Science: Materials in Electronics, 2009, 20, 418-424.	1.1	16
80	Al doping effect on microstructure, electrical properties, dielectric characteristics, and aging behaviors of ZPCCY-based varistors. Journal of Materials Science: Materials in Electronics, 2009, 20, 718-726.	1.1	6
81	The preparation of a ZnO varistor doped with and its properties. Solid State Communications, 2009, 149, 795-798.	0.9	10
82	Preparation and varistor properties of new quaternary Zn–V–Mn–(La, Dy) ceramics. Ceramics International, 2009, 35, 3435-3440.	2.3	35
83	Electrical Properties and Dielectric Characteristics CCT-doped Zn/Pr-based Varistors with Sintering Temperature. Transactions on Electrical and Electronic Materials, 2009, 10, 80-84.	1.0	8
84	Influence of Mn doping on microstructure and DC-accelerated aging behaviors of ZnO–V2O5-based varistors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 32-37.	1.7	17
85	Microstructure, electrical properties, and dc aging characteristics of Tb4O7-doped ZnO-based varistors. Journal of Materials Science, 2008, 43, 2857-2864.	1.7	10
86	Improvement of electrical properties of V2O5 modified ZnO ceramics by Mn-doping for varistor applications. Journal of Materials Science: Materials in Electronics, 2008, 19, 1023-1029.	1.1	24
87	Nonlinear electrical properties and aging characteristics of (NiO, MgO, Cr2O3)-doped Zn-Pr-Co-R (R =) Tj ETQq1 1	0,784314 0.8	rgBT /Over
88	Improvement of electrical properties and aging characteristics of Pr–Co–Cr–Y-modified ZnO varistors by Al2O3 doping. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 146-151.	1.7	11
89	Microstructure and electrical properties of Al2O3-doped ZPCCYA-based varistors. Materials Letters, 2008, 62, 2900-2903.	1.3	8
90	Electrical Properties of PCCYA-doped ZnO-based Varistors. Transactions on Electrical and Electronic Materials, 2008, 9, 96-100.	1.0	0

#	Article	IF	CITATIONS
91	Electrical properties and aging characteristics of terbium-doped ZPCC-based varistors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 112-118.	1.7	12
92	Nonlinear current–voltage properties and accelerated aging behavior of ZPCCL-based varistors with sintering temperature. Materials Letters, 2007, 61, 4950-4953.	1.3	1
93	Microstructure and varistor properties of ZnO–V2O5–MnO2-based ceramics. Journal of Materials Science, 2007, 42, 8370-8373.	1.7	43
94	The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 136, 134-139.	1.7	27
95	Influence of CoO on stability of nonlinear electrical properties and dielectric characteristics in Pr6O11-based ZnO varistor ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133, 91-97.	1.7	11
96	Electrical properties and stability of Dy2O3-doped ZnO–Pr6O11-based varistors. Journal of Materials Science, 2006, 41, 6822-6829.	1.7	6
97	Electrical properties and stability against DC accelerated aging stress of lanthania doped praseodymia-based zinc oxide varistor ceramics. Journal of Materials Science, 2006, 41, 7272-7278.	1.7	8
98	Microstructure and non-ohmic properties of ZPCCT-based ceramics. Journal of Materials Science, 2006, 41, 8382-8385.	1.7	3
99	Effect of CoO on nonlinear electrical properties of praseodymia-based ZnO varistors. Materials Letters, 2006, 60, 164-167.	1.3	13
100	Effect of sintering temperature on nonlinear electrical properties and stability against DC accelerated aging stress of (CoO, Cr2O3, La2O3)-doped ZnO–Pr6O11-based varistors. Materials Letters, 2006, 60, 3311-3314.	1.3	40
101	Effect of sintering temperature on microstructure and electrical properties of Zn·Pr·Co·Cr·La oxide-based varistors. Materials Letters, 2006, 60, 3394-3397.	1.3	21
102	Electrical and Dielectric Properties, and Accelerated Aging Characteristics of Lanthania Doped Zinc Oxide Varistors. Transactions on Electrical and Electronic Materials, 2006, 7, 189-195.	1.0	0
103	Influence of La2O3 additives on microstructure and electrical properties of ZnO-Pr6O11-CoO-Cr2O3-La2O3-based varistors. Materials Letters, 2005, 59, 2097-2100.	1.3	21
104	Microstructure and nonlinear electrical properties of ZnO-Pr6O11-CoO-Cr2O3-La2O3-based varistors. Journal of Materials Science, 2005, 40, 6307-6309.	1.7	10
105	Influence of cobalt oxide addition on electrical properties of ZnO-Pr6O11-based varistor ceramics. Journal of Materials Science, 2005, 40, 1265-1267.	1.7	6
106	Effect of La2O3 addition on microstructure and electrical properties of ZnO-Pr6O11-based varistor ceramics. Journal of Materials Science: Materials in Electronics, 2005, 16, 345-349.	1.1	24
107	Effect of sintering time on electrical characteristics and DC accelerated aging behaviors of Zn-Pr-Co-Cr-Dy oxide-based varistors. Journal of Materials Science: Materials in Electronics, 2005, 16, 725-732.	1.1	19
108	Microstructure and nonlinear electrical properties of ZnO-Pr6O11-CoO-Cr2O3-La2O3-based varistors. Journal of Materials Science Letters, 2005, 40, 6307.	0.5	2

#	Article	IF	CITATIONS
109	The effect of CoO addition on electrical properties and DC accelerated aging behaviors of Zn–Pr–Co–Cr–Dy oxides-based varistors. Materials Chemistry and Physics, 2004, 88, 318-325.	2.0	4
110	Title is missing!. Journal of Materials Science: Materials in Electronics, 2004, 15, 29-36.	1.1	11
111	Microstructure and electrical properties of ZnO-Pr6O11-CoO-Cr2O3-Dy2O3-based varistor ceramics. Journal of Materials Science, 2004, 39, 307-309.	1.7	25
112	Effect of cooling rate on degradation characteristics of ZnO·Pr6O11·CoO·Cr2O3·Y2O3-based varistors. Solid State Communications, 2004, 132, 213-218.	0.9	8
113	Effect of sintering time on electrical properties and stability against DC accelerated aging of Y2O3-doped ZnO-Pr6O11-based varistor ceramics. Ceramics International, 2004, 30, 9-15.	2.3	19
114	Electrical properties and DC-accelerated aging behavior of ZnO–Pr6O11–CoO–Cr2O3–Dy2O3-based varistor ceramics. Ceramics International, 2004, 30, 1009-1016.	2.3	22
115	Microstructure and electrical properties of ZnO-Pr6O11-CoO-Cr2O3-Dy2O3-based varistors. Materials Letters, 2004, 58, 849-852.	1.3	6
116	Microstructure and electrical properties of Dy2O3-doped ZnO?Pr6O11-based varistor ceramics. Materials Letters, 2004, 58, 2252-2255.	1.3	16
117	Nonlinear electrical properties and DC-accelerated aging characteristics of Dy2O3-doped ZnO–Pr6O11-based varistors. Materials Letters, 2004, 58, 3358-3361.	1.3	4
118	Effect of sintering time on varistor properties of Dy2O3-doped ZnO–Pr6O11-based ceramics. Materials Letters, 2004, 58, 3297-3300.	1.3	10
119	Effect of sintering time on stability of nonlinear properties in Dy2O3-doped ZnO–Pr6O11-based varistors. Materials Letters, 2004, 58, 3769-3773.	1.3	3
120	Microstructure and electrical properties of Y2O3-doped ZnO–Pr6O11-based varistor ceramics. Materials Chemistry and Physics, 2003, 82, 157-164.	2.0	60
121	Effect of cooling rate on electrical properties and stability of ZPCCY-based varistor ceramics. Materials Chemistry and Physics, 2003, 82, 726-732.	2.0	6
122	Nonlinear properties and stability against DC accelerated aging stress of praseodymium oxide-based ZnO varistors by Er2O3 doping. Solid State Communications, 2003, 126, 281-284.	0.9	27
123	Nonlinear electrical properties and DC accelerated aging characteristics of ZnO–Pr6O11–CoO–Cr2O3–Dy2O3-based varistors. Solid State Communications, 2003, 127, 389-393.	0.9	28
124	Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er2O3. Journal of the European Ceramic Society, 2003, 23, 1345-1353.	2.8	44
125	Microstructure and electrical properties of Y2O3-doped ZnO–Pr6O11-based varistor ceramics. Materials Letters, 2003, 57, 1317-1321.	1.3	87
126	Highly stable nonlinear properties of ZnO–Pr6O11–CoO–Cr2O3–Y2O3-based varistor ceramics. Materials Letters, 2003, 57, 1322-1326.	1.3	68

#	Article	IF	CITATIONS
127	Influence of cooling rate on stability of nonlinear properties of ZnO–Pr6O11-based varistor ceramics. Materials Letters, 2003, 57, 1544-1549.	1.3	19
128	ZnO-Pr6O11-CoO-Cr2O3-Er2O3-based ceramic varistors with high stability of nonlinear properties. Journal of Materials Science Letters, 2002, 21, 201-204.	0.5	56
129	Influence of sintering temperature on varistor characteristics of ZPCCE-based ceramics. Materials Letters, 2002, 53, 110-116.	1.3	41
130	Title is missing!. Journal of Materials Science: Materials in Electronics, 2002, 13, 111-120.	1.1	30
131	The nonlinear properties and stability of ZnO-Pr6O11-CoO-Cr2O3-Er2O3 ceramic varistors. Materials Letters, 2001, 47, 182-187.	1.3	137
132	The electrical properties and d.c. degradation characteristics of Dy2O3 doped Pr6O11-based ZnO varistors. Journal of the European Ceramic Society, 2001, 21, 545-553.	2.8	69
133	Title is missing!. Journal of Materials Science, 2001, 36, 1671-1679.	1.7	51
134	The nonlinear properties and d.c. degradation characteristics of ZPCCE-based varistors. Journal of Materials Science Letters, 2001, 20, 393-395.	0.5	29
135	Title is missing!. Journal of Materials Science, 2000, 35, 3037-3042.	1.7	76
136	Highly stable nonohmic characteristics of ZnO-Pr6O11-CoO-Dy2O3 based varistors. Journal of Materials Science Letters, 2000, 19, 725-727.	0.5	31
137	Microstructure and varistor properties of ZnO-Pr6O11-CoO-Nd2O3 based ceramics. Journal of Materials Science Letters 2000, 19, 271-274	0.5	48