Ling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7719158/publications.pdf

Version: 2024-02-01

201674 128289 3,626 62 27 60 h-index citations g-index papers 65 65 65 6205 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metal singleâ€atomâ€confined electrocatalysts to water oxidation: Development, innovation, and challenges. Electrochemical Science Advances, 2022, 2, e202100102.	2.8	3
2	Enhanced Power Density of Alcohol Biofuel Cell by Polymerâ€assisted Crosslinks of 3D Graphene on Carbon Paper as the Bioanode. Electroanalysis, 2022, 34, 640-644.	2.9	1
3	Dynamic Covalent Reactions Controlled by Ringâ€Chain Tautomerism of 2â€Formylbenzoic Acid. European Journal of Organic Chemistry, 2022, 2022, e202101461.	2.4	3
4	Surface engineering of Rh-modified Pd nanocrystals by colloidal underpotential deposition for electrocatalytic methanol oxidation. Nanoscale, 2021, 13, 5284-5291.	5.6	13
5	Highly flexible electromagnetic interference shielding films based on ultrathin Ni/Ag composites on paper substrates. Journal of Materials Science, 2021, 56, 5570-5580.	3.7	13
6	Sensitive Detection of Caffeic Acid and Rutin via the Enhanced Anodic Electrochemiluminescence Signal of Luminol. Analytical Sciences, 2020, 36, 311-316.	1.6	3
7	Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45504-45515.	8.0	65
8	A Co 3 O 4 /C Composite for use as a Highâ€Performance Lithiumâ€Ion Battery Anode. ChemistrySelect, 2020, 5, 14613-14619.	1.5	0
9	Dual roles of underpotential deposition in the synthesis of tetrahexahedral Pd–Ag alloy nanocrystals. Chemical Communications, 2020, 56, 14849-14852.	4.1	7
10	n \hat{a}^{\dagger} interactions as a versatile tool for controlling dynamic imine chemistry in both organic and aqueous media. Chemical Science, 2020, 11, 2707-2715.	7.4	29
11	Fabrications of metal organic frameworks derived hierarchical porous carbon on carbon nanotubes as efficient bioanode catalysts of NAD+-dependent alcohol dehydrogenase. Electrochimica Acta, 2020, 340, 135958.	5.2	11
12	Synergistic Enhancement Effects of Carbon Quantum Dots and Au Nanoclusters for Cathodic ECL and Nonâ€enzyme Detections of Glucose. Electroanalysis, 2020, 32, 1155-1159.	2.9	23
13	Natural Compounds Gallic Acid Derivatives for Long‣ife Li/Na Organic Batteries. ChemElectroChem, 2019, 6, 4765-4772.	3.4	9
14	Self-assembly of nickel: from nanoparticles to foils with tunable magnetic properties. CrystEngComm, 2019, 21, 5317-5321.	2.6	2
15	Low-temperature sintering of silver nanoparticles on paper by surface modification. Nanotechnology, 2019, 30, 505303.	2.6	5
16	Azoâ€Groupâ€Containing Organic Compounds as Electrode Materials in Fullâ€Cell Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 5080-5085.	3.4	10
17	FeS ₂ @C Core–Shell Nanochains as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2019, 2, 3889-3896.	5.0	28
18	Facile <i>in situ</i> growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries. RSC Advances, 2019, 9, 19253-19260.	3.6	17

#	Article	IF	CITATIONS
19	Three new C23 steroids from the leaves and stems of Nicandra physaloides. Steroids, 2019, 150, 108424.	1.8	3
20	PtCu–O highly excavated octahedral nanostructures built with nanodendrites for superior alcohol electrooxidation. Journal of Materials Chemistry A, 2019, 7, 8568-8572.	10.3	32
21	Synthesis and Properties of Azideâ€Functionalized Ionic Liquids as Attractive Hypergolic Fuels. Chemistry - an Asian Journal, 2019, 14, 2122-2128.	3.3	8
22	Modulating the oxophilic properties of inorganic nanomaterials for electrocatalysis of small carbonaceous molecules. Nano Today, 2019, 29, 100802.	11.9	20
23	Redox Potentials and Electronic States of Iron Porphyrin IX Adsorbed on Single Crystal Gold Electrode Surfaces. Langmuir, 2018, 34, 3610-3618.	3.5	7
24	Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation. Nanoscale, 2018, 10, 9369-9375.	5.6	28
25	Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni ₂ P–CeO ₂ . Inorganic Chemistry, 2018, 57, 548-552.	4.0	78
26	Efficient Electrochemical N ₂ Reduction to NH ₃ on MoN Nanosheets Array under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9550-9554.	6.7	210
27	Enhanced Electrocatalysis for Energyâ€Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials, 2017, 7, 1700020.	19.5	519
28	Electrochemical Hydrazine Oxidation Catalyzed by Iron Phosphide Nanosheets Array toward Energyâ€Efficient Electrolytic Hydrogen Production from Water. ChemistrySelect, 2017, 2, 3401-3407.	1.5	28
29	Co-based nanowire films as complementary hydrogen- and oxygen-evolving electrocatalysts in neutral electrolyte. Catalysis Science and Technology, 2017, 7, 2689-2694.	4.1	39
30	Facilitating Active Species Generation by Amorphous NiFeâ€B _i Layer Formation on NiFe‣DH Nanoarray for Efficient Electrocatalytic Oxygen Evolution at Alkaline pH. Chemistry - A European Journal, 2017, 23, 11499-11503.	3.3	69
31	Surface Modification of a NiS ₂ Nanoarray with Ni(OH) ₂ toward Superior Water Reduction Electrocatalysis in Alkaline Media. Inorganic Chemistry, 2017, 56, 13651-13654.	4.0	84
32	New electrochemiluminescence catalyst: Cu2O semiconductor crystal and the enhanced activity of octahedra synthesized by iodide ions coordination. Materials Research Express, 2017, 4, 115021.	1.6	3
33	Detection of Sodium Dehydroacetate by Tris(2,2′â€bipyridine)ruthenium(II) Electrochemiluminescence. ChemElectroChem, 2017, 4, 1702-1707.	3.4	11
34	Electrochemical single-molecule conductivity of duplex and quadruplex DNA. Current Opinion in Electrochemistry, 2017, 4, 166-174.	4.8	3
35	Voltammetry and molecular assembly of G-quadruplex DNAzyme on single-crystal Au(111)-electrode surfaces $\hat{a} \in \mathcal{C}$ hemin as an electrochemical intercalator. Faraday Discussions, 2016, 193, 99-112.	3.2	6
36	Quantitative Reactivity Scales for Dynamic Covalent and Systems Chemistry. Journal of the American Chemical Society, 2016, 138, 381-389.	13.7	23

#	Article	IF	CITATIONS
37	Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature. Nanoscale, 2015, 7, 13420-13426.	5.6	9
38	Mass Transport Mechanism of Cu Species at the Metal/Dielectric Interfaces with a Graphene Barrier. ACS Nano, 2014, 8, 12601-12611.	14.6	55
39	Simultaneous voltammetric determination of dihydroxybenzene isomers at single-walled carbon nanohorn modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2014, 198, 388-394.	7.8	36
40	New synthesis of gold nanocorals using a diazonium compound, and their application to an electrochemiluminescent assay of hydrogen peroxide. Mikrochimica Acta, 2014, 181, 737-742.	5.0	8
41	Heterogeneous Reconstitution of the PQQ-Dependent Glucose Dehydrogenase Immobilized on an Electrode: A Sensitive Strategy for PQQ Detection Down to Picomolar Levels. Analytical Chemistry, 2014, 86, 2257-2267.	6.5	21
42	Facile Synthesis of Porous PtM (M=Cu, Ni) Nanowires and Their Application as Efficient Electrocatalysts for Methanol Electrooxidation. ChemCatChem, 2014, 6, 2253-2257.	3.7	41
43	One-pot synthesis of gold nanorods using binary surfactant systems with improved monodispersity, dimensional tunability and plasmon resonance scattering properties. Nanotechnology, 2014, 25, 125601.	2.6	23
44	Synthesis of Convex Hexoctahedral Palladium@Gold Core–Shell Nanocrystals with {431} High-Index Facets with Remarkable Electrochemiluminescence Activities. ACS Nano, 2014, 8, 5953-5958.	14.6	76
45	Electrochemiluminescence Resonance Energy Transfer Based on Ru(phen) ₃ ²⁺ -Doped Silica Nanoparticles and Its Application in "Turn-on― Detection of Ozone. Analytical Chemistry, 2013, 85, 3207-3212.	6.5	71
46	Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials. Nanotechnology Reviews, 2013, 2, 615-635.	5.8	58
47	Pd@Au core–shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties. Faraday Discussions, 2013, 164, 175.	3.2	18
48	Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Analytica Chimica Acta, 2013, 762, 83-86.	5 . 4	302
49	Synthesis and electrocatalytic properties of tetrahexahedral, polyhedral, and branched Pd@Au core–shell nanocrystals. Chemical Communications, 2013, 49, 8836.	4.1	23
50	A Template-Free and Surfactant-Free Method for High-Yield Synthesis of Highly Monodisperse 3-Aminophenol–Formaldehyde Resin and Carbon Nano/Microspheres. Macromolecules, 2013, 46, 140-145.	4.8	155
51	Facet-dependent electrocatalytic activities of Pd nanocrystals toward the electro-oxidation of hydrazine. Electrochemistry Communications, 2013, 37, 57-60.	4.7	26
52	Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale, 2013, 5, 3172.	5.6	173
53	Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today, 2012, 7, 586-605.	11.9	224
54	Seed-mediated growth method for high-quality noble metal nanocrystals. Science China Chemistry, 2012, 55, 2311-2317.	8.2	26

#	Article	IF	CITATIONS
55	Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosensors and Bioelectronics, 2012, 32, 297-299.	10.1	232
56	Facile synthesis and electrochemiluminescence application of concave trisoctahedral Pd@Au core–shell nanocrystals bound by {331} high-index facets. Chemical Communications, 2011, 47, 10353.	4.1	54
57	Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+. Chemical Communications, 2011, 47, 11951.	4.1	84
58	A novel fluorescent aptasensor based on single-walled carbon nanohorns. Nanoscale, 2011, 3, 4589.	5.6	36
59	Seed-mediated growth of palladium nanocrystals: The effect of pseudo-halide thiocyanate ions. Nanoscale, 2011, 3, 678-682.	5. 6	37
60	Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosensors and Bioelectronics, 2011, 29, 215-218.	10.1	43
61	Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano, 2010, 4, 1987-1996.	14.6	380
62	Copper and iron mediated growth of surfactantâ€free PtCu and PtFe advanced electrocatalysts for water oxidation and oxygen reduction. Electrochemical Science Advances, 0, , e2100033.	2.8	1