Jiangtao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718720/publications.pdf

Version: 2024-02-01

		201575	189801
151	3,532	27	50
papers	citations	h-index	g-index
156	156	156	2472
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Liquid viscosity for binary mixtures of R22Â+ÂR1234ze(E) and R22Â+ÂR1234yf from (273 to 353) K at pressures up to 15ÂMPa. Journal of Chemical Thermodynamics, 2022, 164, 106641.	1.0	4
2	Liquid Viscosity Measurements for the Binary and Ternary Refrigerant Mixtures of R134a, R1234ze(E), and R1234yf. Journal of Chemical & Data, 2022, 67, 1872-1881.	1.0	7
3	Effect of Temporal Sampling Interval on the Irradiance for Moon-Based Wide Field-of-View Radiometer. Sensors, 2022, 22, 1581.	2.1	3
4	Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs. International Journal of Refrigeration, 2022, 138, 133-147.	1.8	8
5	Surface tension measurements and modelling of n-HexadecaneÂ+Ân-Dodecane, n-HexadecaneÂ+Â2,2,4,4,6,8,8-Heptamethylnonane, n-HexadecaneÂ+Ân-Octacosane and n-HexadecaneÂ+ASqualane binary mixtures between (303 and 573) K by pendant drop method. Journal of Chemical Thermodynamics. 2022. 170. 106782.	1.0	6
6	A Simple Model with Wide Applicability for the Determination of Binary Interaction Parameters for Mixtures of <i>n</i> Alkanes with Carbon Dioxide and Nitrogen. Industrial & Engineering Chemistry Research, 2022, 61, 12229-12238.	1.8	4
7	Research on the monthly fluctuation of natural gas demand in China. Energy Science and Engineering, 2022, 10, 3602-3616.	1.9	2
8	Viscosity and interfacial tension of n-heptane with dissolved carbon dioxide by surface light scattering (SLS). Journal of Chemical Thermodynamics, 2021, 152, 106266.	1.0	16
9	Measurements of density and viscosity of 1-hexadecanol in the temperature range from (328.15 to) Tj ETQq $1\ 1\ 0$.	784314 rş	gBT/Overloc
10	Journal of Chemical & Engineering Data: An Update from the Editorial Team. Journal of Chemical & Samp; Engineering Data, 2021, 66, 1-2.	1.0	0
11	Journal of Chemical & Engineering Data: Why Change the Cover Page?. Journal of Chemical & Samp; Engineering Data, 2021, 66, 859-860.	1.0	O
12	Historical Perspective of the Journal of Chemical & Engineering Data's Published Topics, 1956–2020. Journal of Chemical & Engineering Data, 2021, 66, 1555-1556.	1.0	1
13	Liquid viscosity, interfacial tension, thermal diffusivity and mutual diffusivity of n-Tetradecane with dissolved carbon dioxide. Fluid Phase Equilibria, 2021, 534, 112951.	1.4	9
14	Experimental investigation for the solubilities of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) in polyol ester, polyvinylether, and polyalkylene glycol base oils. International Journal of Refrigeration, 2021, 125, 84-89.	1.8	8
15	Surface Tension Measurements by Pendant Drop Method of 10 Pure Long-Chain Alkanes and Alcohols for Temperatures up to 573.15 K. Journal of Chemical & Engineering Data, 2021, 66, 2615-2628.	1.0	7
16	A comparison study of photothermal effect between moxibustion therapy and laser irradiation on biological tissue. International Journal of Thermal Sciences, 2021, 164, 106924.	2.6	6
17	Simultaneous measurement of the density and viscosity for n-DecaneÂ+ÂCO2 binary mixtures at temperature between (303.15 to 373.15) K and pressures up to 80ÂMPa. Journal of Molecular Liquids, 2021, 338, 116646.	2.3	12
18	Equations of State for the Thermodynamic Properties of Three Hexane Isomers: 3-Methylpentane, 2,2-Dimethylbutane, and 2,3-Dimethylbutane. Journal of Physical and Chemical Reference Data, 2021, 50, .	1.9	6

#	Article	IF	CITATIONS
19	Experimental measurements and correlations of the vapor phase pvTx behavior of binary mixtures of $1,1,1,2$ -tetrafluoroethane (R134a)Â+Â2,3,3,3-tetrafluoroprop-1-ene (R1234yf). International Journal of Refrigeration, 2021, 132, 263-275.	1.8	3
20	Impact of high-quality-development strategy on energy demand of East China. Energy Strategy Reviews, 2021, 38, 100699.	3.3	9
21	Energy demand and supply planning of China through 2060. Energy, 2021, 234, 121193.	4.5	72
22	Phase Equilibria of Difluoromethane (R32), 1,1,1,2-Tetrafluoroethane (R134a), and <i>trans</i> -1,3,3,3-Tetrafluoro-1-propene (R1234ze(E)) Probed by Experimental Measurements and Monte Carlo Simulations. Industrial & Engineering Chemistry Research, 2021, 60, 739-752.	1.8	14
23	Density and Viscosity Measurements of 1-Dodecanol and 1,12-Dodecanediol at Temperatures of up to 573.15 K and Pressures of up to 10 MPa. Journal of Chemical & Engineering Data, 2021, 66, 712-721.	1.0	8
24	A Comparison Study of the Effect on IBS-D Rats among Ginger-Partitioned Moxibustion, Mild Moxibustion, and Laser Moxibustion. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	1
25	Equations of State for the Thermodynamic Properties of $\langle i \rangle n \langle i \rangle$ -Perfluorobutane, $\langle i \rangle n \langle i \rangle$ -Perfluoropentane, and $\langle i \rangle n \langle i \rangle$ -Perfluorohexane. Industrial & Engineering Chemistry Research, 2021, 60, 17207-17227.	1.8	4
26	Compressed liquid densities of binary mixtures of difluoromethane (R32) and 2,3,3,3-tetrafluoroprop-1-Ene (R1234yf) at temperatures from (283 to 363) K and pressures up to 100†MPa. Journal of Chemical Thermodynamics, 2020, 141, 105935.	1.0	9
27	Solubilities of difluoromethane (R32) in polyol ester, polyvinylether, and polyalkylene glycol base oils at temperatures from 273ÂK to 351ÂK. International Journal of Refrigeration, 2020, 111, 63-70.	1.8	11
28	Determination of thermal and mutual diffusivity of n-heptane with dissolved carbon dioxide by dynamic light scattering. Fluid Phase Equilibria, 2020, 526, 112804.	1.4	5
29	Experimental measurement and modelling of vapor-liquid equilibrium for 3,3,3-Trifluoropropene (R1243zf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)) binary system. International Journal of Refrigeration, 2020, 120, 137-149.	1.8	28
30	Thermal Diffusivity Measurement of Trans-1-chloro-3,3,3-trifluoropropene (R1233zd(E)) and Dodecafluoro-2-methylpentan-3-one (Novec1230) by the Dynamic Light Scattering Method. Journal of Chemical & Data, 2020, 65, 4236-4241.	1.0	9
31	PVT and Thermal-Pressure Coefficient Measurements and Derived Thermodynamic Properties of 2-Propanol in the Critical and Supercritical Regions. International Journal of Thermophysics, 2020, 41, 1.	1.0	3
32	Reference Correlations for the Thermal Conductivity of Solid BK7, PMMA, Pyrex 7740, Pyroceram 9606 and SS304. International Journal of Thermophysics, 2020, 41, 1.	1.0	12
33	Vapour-liquid equilibria for the binary systems of pentafluoroethane {(R125)Â+Â2,3,3,3-tetrafluoroprop-1-ene (R1234yf)} and {trans-1,3,3,3-tetrafluoropropene R1234ze(E)}. Journal of Chemical Thermodynamics, 2020, 150, 106222.	1.0	24
34	Flammability limits of benzene, toluene, xylenes from 373 K to 473 K and flame-retardant effect of steam on benzene series. Chemical Engineering Research and Design, 2020, 137, 328-339.	2.7	9
35	Measurements of the Thermal Conductivity of $\langle i \rangle n \langle j \rangle$ -Pentane, Isopentane, 1-Pentene, and 1-Pentanol in the Temperature Range from 253 to 373 K at Pressures up to 30 MPa. Journal of Chemical & Engineering Data, 2020, 65, 1993-2001.	1.0	6
36	Measurements of the Thermal Conductivity of $\langle i \rangle n \langle j \rangle$ -Octane, Isooctane, 1-Octene, and 1-Octanol in the Temperature Range from 253 to 393 K at Pressures up to 30 MPa. Journal of Chemical & Engineering Data, 2019, 64, 4557-4564.	1.0	8

#	Article	IF	CITATIONS
37	Highlighting 10 Years of NIST Cooperation and Service to the Thermophysical Properties Data Community. Journal of Chemical & Engineering Data, 2019, 64, 4191-4192.	1.0	4
38	Simultaneously measurements of the PVT and thermal – pressure coefficient of benzene in the critical and supercritical regions. Journal of Molecular Liquids, 2019, 293, 111381.	2.3	4
39	Experimental measurements of saturated vapor pressure and isothermal vapor-liquid equilibria for 1,1,1,2-Tetrafluoroethane (HFC-134a)Â+ 3,3,3-trifluoropropene (HFO-1243zf) binary system. Fluid Phase Equilibria, 2019, 498, 86-93.	1.4	26
40	The thermal performance of biological tissue under moxibustion therapy. Journal of Thermal Biology, 2019, 83, 103-111.	1.1	12
41	Introducing JCED's Latin America Special Issue. Journal of Chemical & Engineering Data, 2019, 64, 1859-1859.	1.0	1
42	The Effect of Moxibustion Stimulation on Local and Distal Skin Temperature in Healthy Subjects. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-10.	0.5	5
43	Vapor phase pvTx measurements of binary mixtures of difluoromethane (R32) and 2,3,3,3-tetrafluoroprop-1-ene (R1234yf). Journal of Chemical Thermodynamics, 2019, 134, 41-51.	1.0	14
44	Viscosity Measurements of Dialkyl Adipates in the Temperature Range of (283 to 363) K and up to 40ÂMPa. International Journal of Thermophysics, 2019, 40, 1.	1.0	8
45	Calcium Ion Bridging of Aqueous Carboxylates onto Silica: Implications for Low-Salinity Waterflooding. Energy &	2.5	15
46	Measurement and Correlation of the Liquid Density and Viscosity of HFO-1336mzz(Z) (<i>cis</i> -1,1,1,4,4,4-Hexafluoro-2-butene) at High Pressure. Journal of Chemical & Data, 2019, 64, 395-403.	1.0	16
47	Asphaltene Adsorption from Toluene onto Silica through Thin Water Layers. Langmuir, 2019, 35, 428-434.	1.6	26
48	Solubilities of carbon dioxide, oxygen, and nitrogen in aqueous ethylene glycol solution under low pressures. Fluid Phase Equilibria, 2019, 485, 16-22.	1.4	10
49	Saturated Liquid Dynamic Viscosity and Surface Tension of <i>trans</i> -1-Chloro-3,3,3-trifluoropropene and Dodecafluoro-2-methylpentan-3-one. Journal of Chemical & Dodecafluoro Chemical & Dodecaflu	1.0	20
50	Measurement and correlation of the liquid viscosity of trans-1-chloro-3,3,3-trifluoropropene (R1233zd(E)). Journal of Chemical Thermodynamics, 2018, 123, 140-145.	1.0	13
51	Heat Capacity of Saturated and Compressed Liquid Dimethyl Ether at Temperatures from (132 to 345) K and at Pressures to 35 MPa. Journal of Chemical & Engineering Data, 2018, 63, 1713-1723.	1.0	7
52	Vapor–Liquid Equilibria for the Binary and Ternary Systems of Difluoromethane (R32), 1,1-Difluoroethane (R152a), and 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf). Journal of Chemical & Engineering Data, 2018, 63, 771-780.	1.0	25
53	An In Vitro and Numerical Study of Moxibustion Therapy on Biological Tissue. IEEE Transactions on Biomedical Engineering, 2018, 65, 779-788.	2.5	19
54	Compressed liquid densities of binary mixtures of n -decaneÂ+ n -dodecane at temperatures from 283ÂK to 363ÂK and pressures up to 100ÂMPa. Fluid Phase Equilibria, 2018, 459, 65-72.	1.4	10

#	Article	IF	Citations
55	Thermal diffusivity measurements of R1234yf and R1234ze(E) under saturation conditions using dynamic light scattering method. International Journal of Refrigeration, 2018, 86, 133-138.	1.8	8
56	Vapor liquid equilibria for binary mixtures of difluoromethane (R32) + fluoroethane (R161) and fluoroethane (R161) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). Journal of Chemical Thermodynamics, 2018, 118, 43-50.	1.0	25
57	Peer Review Appreciation at <i>JCED</i> . Journal of Chemical & Engineering Data, 2018, 63, 3169-3169.	1.0	1
58	Liquid Density of $\langle i\rangle n\langle i\rangle$ -Pentene, $\langle i\rangle n\langle i\rangle$ -Hexene, and $\langle i\rangle n\langle i\rangle$ -Heptene at Temperatures from 283.15 to 363.15 K and Pressures up to 100 MPa. Journal of Chemical & Engineering Data, 2018, 63, 2280-2289.	1.0	10
59	Systematic scheme and key parameters of moon-based imaging spectrometer. , 2018, , .		O
60	Vapor liquid equilibrium measurements for difluoromethane (R32)Â+Â2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and fluoroethane (R161)Â+Â2,3,3,3-tetrafluoroprop-1-ene (R1234yf). Fluid Phase Equilibria, 2017, 438, 10-17.	1.4	55
61	Isothermal vapor liquid equilibrium measurements for difluoromethane (R32) + fluoroethane (R161) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) ternary mixtures. International Journal of Refrigeration, 2017, 79, 49-56.	1.8	9
62	Effects of solar radiation, terrestrial radiation and lunar interior heat flow on surface temperature at the nearside of the Moon: Based on numerical calculation and data analysis. Advances in Space Research, 2017, 60, 938-947.	1.2	26
63	Compressed Liquid Viscosity of 2-Methylpentane, 3-Methylpentane, and 2,3-Dimethylbutane at Temperatures from (273 to 343) K and Pressures up to 40 MPa. Journal of Chemical & Engineering Data, 2017, 62, 1146-1152.	1.0	3
64	Surface tension of four oxygenated fuels: experiment and correlation. Fluid Phase Equilibria, 2017, 452, 9-15.	1.4	16
65	Measurement and Correlation of the Viscosity of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone. Journal of Chemical & Engineering Data, 2017, 62, 3603-3609.	1.0	12
66	Compressed Liquid Densities of Binary Mixtures of 1-Butanol and Diethylene Glycol Dimethyl Ether from (283 to 363) K at Pressures up to 100 MPa. Journal of Chemical & Engineering Data, 2017, 62, 2937-2943.	1.0	6
67	Isothermal vapor liquid equilibrium measurements for difluoromethane (R32)Â+Âtrans-1,3,3,3-tetrafluoropropene (R1234ze(E)). Fluid Phase Equilibria, 2017, 431, 58-65.	1.4	46
68	The Effect of Ash Cleaning Cycles on Thermal Characteristics of Moxibustion Therapy., 2017,,.		0
69	Towards Moon-based monitoring of energy budget of the earth climate system. , 2016, , .		5
70	Compressed Liquid Densities and Helmholtz Energy Equation of State for Fluoroethane (R161). International Journal of Thermophysics, 2016, 37, 1.	1.0	20
71	Volumetric properties of binary mixtures of {difluoromethane (R32) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E))} at temperatures from 283.15 K to 363.15 K and pressures up to 100 MPa. Journal of Chemical Thermodynamics, 2016, 101 , 54 - 63 .	1.0	25
72	Thermodynamic Properties at Saturation Derived from Experimental Two-Phase Isochoric Heat Capacity of 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide. International Journal of Thermophysics, 2016, 37, 1.	1.0	21

#	Article	IF	Citations
73	A Helmholtz Energy Equation of State for Sulfur Dioxide. Journal of Chemical & Engineering Data, 2016, 61, 2859-2872.	1.0	27
74	Surface Tension and Liquid Viscosity of R32+R1234yf and R32+R1234ze. Journal of Chemical & Engineering Data, 2016, 61, 950-957.	1.0	47
75	Viscosity measurements of ortho -xylene, meta -xylene, para -xylene and ethylbenzene. Journal of Chemical Thermodynamics, 2016, 95, 116-123.	1.0	11
76	Editorial: Molecular Modeling and Simulation in <i>JCED</i> . Journal of Chemical & Data, 2016, 61, 1-2.	1.0	7
77	Surface tension and liquid viscosity measurement for binary mixtures of R134a with R1234yf and R1234ze(E). Fluid Phase Equilibria, 2016, 414, 60-64.	1.4	27
78	A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids. International Journal of Thermophysics, 2015, 36, 3083-3105.	1.0	24
79	Compressed Liquid Viscosity Measurements of HFE-7000, HFE-7100, HFE-7200, and HFE-7500 at Temperatures from (253 to 373) K and Pressures up to 30 MPa. Journal of Chemical & Engineering Data, 2015, 60, 3562-3570.	1.0	9
80	Surface tension and liquid viscosity measurement of ethyl fluoride (R161) under saturation condition. Fluid Phase Equilibria, 2015, 405, 25-30.	1.4	22
81	Liquid Density of 2-Methoxyethyl Acetate, 2-Ethylhexyl Acetate, and Diethyl Succinate at Temperatures from 283.15 K to 363.15 K and Pressures up to 100 MPa. Journal of Chemical & Engineering Data, 2015, 60, 3532-3538.	1.0	13
82	Viscosity Measurements of Ethyl Fluoride (R161) from 243ÂK to 363ÂK at Pressures up to 30ÂMPa. International Journal of Thermophysics, 2015, 36, 2497-2506.	1.0	11
83	Research on the inherent error of ultrasonic flowmeter in non-ideal hydrogen flow fields. International Journal of Hydrogen Energy, 2014, 39, 6104-6110.	3.8	11
84	Liquid density of HFE-7200 and HFE-7500 from T=(283 to 363)K at pressures up to 100MPa. Journal of Chemical Thermodynamics, 2014, 69, 36-42.	1.0	21
85	Liquid Viscosity and Surface Tension of R1234yf and R1234ze Under Saturation Conditions by Surface Light Scattering. Journal of Chemical & Engineering Data, 2014, 59, 1366-1371.	1.0	69
86	Double threshold ultrasonic distance measurement technique and its application. Review of Scientific Instruments, 2014, 85, 044905.	0.6	23
87	An improved prediction equation of refrigerants surface tension based on the principle of corresponding states. Chemical Research in Chinese Universities, 2014, 30, 681-684.	1.3	5
88	Flammability limits of binary mixtures of dimethyl ether with five diluent gases. Journal of Loss Prevention in the Process Industries, 2014, 29, 138-143.	1.7	19
89	Isobaric heat capacity measurements of liquid HFE-7200 and HFE-7500 from 245 to 353K at pressures up to 15MPa. Fluid Phase Equilibria, 2014, 372, 56-62.	1.4	11
90	Liquid density of HFE-7000 and HFE-7100 from T=(283 to 363)K at pressures up to 100MPa. Journal of Chemical Thermodynamics, 2014, 77, 131-136.	1.0	29

#	Article	IF	Citations
91	Realization of a multipath ultrasonic gas flowmeter based on transit-time technique. Ultrasonics, 2014, 54, 285-290.	2.1	68
92	Improvement of Quality in Publication of Experimental Thermophysical Property Data: Challenges, Assessment Tools, Global Implementation, and Online Support. Journal of Chemical & Engineering Data, 2013, 58, 2699-2716.	1.0	236
93	Liquid density of biofuel mixtures: 1-Heptanol+heptane system at pressures up to 140MPa and temperatures from 298.15K to 393.15K. Journal of Chemical Thermodynamics, 2013, 65, 174-183.	1.0	34
94	Viscosity measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). Journal of Chemical Thermodynamics, 2013, 63, 24-30.	1.0	68
95	Viscosity modeling of some oxygenated fuels. Fuel, 2013, 107, 309-314.	3.4	12
96	Density measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). Journal of Chemical Thermodynamics, 2013, 60, 150-158.	1.0	59
97	New Procedures for Articles Reporting Thermophysical Properties. Journal of Chemical & Description (2013, 58, 1069-1069).	1.0	2
98	Flammability Limits of Binary Mixtures of 1,2-Ethanediol + Steam and 1,2-Propanediol + Steam. Journal of Chemical & Chemi	1.0	5
99	Experimental Measurement and Modeling of the Viscosity of Dimethyl Ether. Journal of Chemical & Engineering Data, 2012, 57, 988-993.	1.0	16
100	Thermal Conductivity of Liquid 2-Methoxyethyl Acetate, 2-Ethylhexyl Acetate, and Diethyl Succinate. Journal of Chemical & Diethyl Succinate, 2012, 57, 2863-2868.	1.0	15
101	Effect of protein molecular weight on the mass transfer in protein mixing. Science China: Physics, Mechanics and Astronomy, 2012, 55, 470-476.	2.0	0
102	Thermodynamic Properties of $\langle i \rangle o \langle i \rangle - Xy $ ene, $\langle i \rangle m \langle i \rangle - Xy $ ene, $\langle i \rangle p \langle i \rangle - Xy $ ene, and Ethylbenzene. Journal of Physical and Chemical Reference Data, 2012, 41, 023103-023103-26.	1.9	30
103	Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc. Journal of Physical and Chemical Reference Data, 2012, 41, .	1.9	194
104	An Equation of State for Fluoroethane (R161). International Journal of Thermophysics, 2012, 33, 220-234.	1.0	21
105	Calculations of the thermophysical properties of binary mixtures of noble gases at low density from ab initiopotentials. Molecular Physics, 2011, 109, 1607-1615.	0.8	11
106	Compressed Liquid Viscosity of 1,1,1,3,3-Pentafluoropropane (R245fa) and 1,1,1,3,3,3-Hexafluoropropane (R236fa). Journal of Chemical & Data, 2011, 56, 4956-4964.	1.0	31
107	New Procedures for Articles Reporting Thermophysical Properties. Journal of Chemical & Description (2011), 56, 4279-4279.	1.0	7
108	An Equation of State for the Thermodynamic Properties of Dimethyl Ether. Journal of Physical and Chemical Reference Data, 2011, 40, .	1.9	73

#	Article	IF	CITATIONS
109	Thermodynamic Properties of Dimethyl Carbonate. Journal of Physical and Chemical Reference Data, 2011, 40, .	1.9	26
110	Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids. Nanoscale Research Letters, 2011, 6, 443.	3.1	25
111	Thermal conductivity of liquid 1,1,1,3,3,3-hexafluoropropane (HFC-236fa) from 253K to 373K and pressure up to 30MPa. Fluid Phase Equilibria, 2011, 304, 64-67.	1.4	6
112	Compressed liquid densities of 1,1,1,3,3-pentafluoropropane (HFC-245fa) and 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). Fluid Phase Equilibria, 2011, 307, 1-5.	1.4	10
113	Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and Management, 2011, 52, 733-737.	4.4	258
114	Compressed liquid density measurements of dimethyl ether with a vibrating tube densimeter. Journal of Chemical Thermodynamics, 2011, 43, 1371-1374.	1.0	23
115	Gas phase PVT properties and second virial coefficients of dimethyl ether. Fluid Phase Equilibria, 2010, 298, 298-302.	1.4	16
116	Surface tension of diethyl carbonate, 1,2-dimethoxyethane and diethyl adipate. Fluid Phase Equilibria, 2010, 295, 46-49.	1.4	15
117	Prediction of transport properties of pure noble gases and some of their binary mixtures by ab initio calculations. Fluid Phase Equilibria, 2010, 290, 55-62.	1.4	13
118	Surface tension of dimethyl ether+propane from 243 to 333K. Fluid Phase Equilibria, 2010, 298, 150-153.	1.4	13
119	Thermal Conductivity of Liquid Diethyl Ether, Diisopropyl Ether, and Di- <i>n</i> -butyl Ether from (233) Tj ETQq1 1	0.784314 1.0	rgBT /Over
120	Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin. Journal of Physical and Chemical Reference Data, 2010, 39, .	1.9	206
121	Surface Tension of Diethyl Ether, Diisopropyl Ether, and Dibutyl Ether. Journal of Chemical & Dibutyl Ether. Journal of Ch	1.0	24
122	Viscosity of Gaseous HFC245fa. Journal of Chemical & Engineering Data, 2010, 55, 496-499.	1.0	7
123	Surface Tension of Propane (R-290) + 1,1-Difluoroethane (R-152a) from (248 to 328) K. Journal of Chemical & Engineering Data, 2010, 55, 3077-3079.	1.0	18
124	Surface tension of pentafluoroethane+1,1-difluoroethane from (243 to 328)K. Fluid Phase Equilibria, 2009, 287, 23-25.	1.4	15
125	Thermal Conductivity of Liquid 1, 2-Dimethoxyethane from 243K to 353K at Pressures up to 30MPa. International Journal of Thermophysics, 2009, 30, 385-396.	1.0	24
126	Performance of mixture refrigerant R152a/R125/R32 in domestic air-conditioner. International Journal of Refrigeration, 2009, 32, 1049-1057.	1.8	35

#	Article	IF	Citations
127	Viscosity and Density Measurements of Diisopropyl Ether and Dibutyl Ether at Different Temperatures and Pressures. Journal of Chemical & Engineering Data, 2009, 54, 2353-2358.	1.0	49
128	Thermal Conductivity of Liquid Dimethyl Ether from (233 to 373) K at Pressures up to 30 MPa. Journal of Chemical & Engineering Data, 2009, 54, 1720-1723.	1.0	13
129	Density and Viscosity Measurements of Dimethoxymethane and 1,2-Dimethoxyethane from 243 K to 373 K up to 20ÂMPa. International Journal of Thermophysics, 2008, 29, 1244-1256.	1.0	33
130	New Measurements of the Thermal Conductivity of PMMA, BK7, and Pyrex 7740 up to 450K. International Journal of Thermophysics, 2008, 29, 1257-1266.	1.0	47
131	Density and viscosity measurements of diethyl ether from 243 to 373K and up to 20MPa. Fluid Phase Equilibria, 2008, 271, 1-5.	1.4	25
132	Density and Viscosity Measurements of Diethyl Adipate from (303 to 373) K and up to 20 MPa. Journal of Chemical & Chemica	1.0	22
133	Vapor Pressure Measurements of Dimethyl Ether from (213 to 393) K. Journal of Chemical & Engineering Data, 2008, 53, 2247-2249.	1.0	32
134	Viscosity modeling of several HFC refrigerants using the friction theory. Fluid Phase Equilibria, 2007, 262, 251-263.	1.4	17
135	Surface Tension of Dimethoxymethane and Methyltert-Butyl Ether. Journal of Chemical & Samp; Engineering Data, 2006, 51, 1394-1397.	1.0	24
136	Thermal Conductivity of Liquid Dimethoxymethane and Dimethoxymethane + Diesel Fuel at Pressures to 30 MPa. Journal of Chemical & Diesel & Data, 2006, 51, 1743-1748.	1.0	8
137	Surface Tensions of Mixtures of Diesel Oil or Gasoline and Dimethoxymethane, Dimethyl Carbonate, or Ethanol. Energy & Diesel, 2006, 20, 2471-2474.	2.5	50
138	Thermal Conductivity of HFC-245fa from (243 to 413) K. Journal of Chemical & Engineering Data, 2006, 51, 1424-1428.	1.0	10
139	Thermal Conductivity of Gaseous Dimethyl Ether from (263 to 383) K. Journal of Chemical & Engineering Data, 2006, 51, 164-168.	1.0	15
140	Vapor Pressure of Dimethoxymethane and $1,1,1,3,3$ -Pentafluoropropane. Journal of Chemical & Engineering Data, 2006, 51, 186-189.	1.0	25
141	Thermal Conductivity of Some Oxygenated Fuels and Additives in the Saturated Liquid Phase. Journal of Chemical & Chemical	1.0	11
142	Density and Viscosity of Saturated Liquid Dimethoxymethane from (218.15 to 383.15) K. Journal of Chemical & Ch	1.0	17
143	The thermal conductivity of dimethyl carbonate in the liquid phase. Fluid Phase Equilibria, 2004, 220, 37-40.	1.4	23
144	Surface tension of dimethyl carbonate (C3H6O3). Fluid Phase Equilibria, 2004, 220, 123-126.	1.4	23

#	Article	IF	CITATIONS
145	Measurement of the Critical Parameters and the Saturation Densities of Dimethyl Ether. Journal of Chemical & Engineering Data, 2004, 49, 704-708.	1.0	39
146	Vapor Pressure Measurements of Dimethyl Ether from (233 to 399) K. Journal of Chemical & Engineering Data, 2004, 49, 32-34.	1.0	55
147	Surface Tension of Dimethyl Ether from (213 to 368) K. Journal of Chemical & Engineering Data, 2003, 48, 1571-1573.	1.0	53
148	Viscosity of Saturated Liquid Dimethyl Ether from (227 to 343) K. Journal of Chemical & Engineering Data, 2003, 48, 426-429.	1.0	44
149	CHAPTER 5. Thermal Conductivity and Diffusivity. , 0, , 132-172.		2
150	A semi-analytical model based on unsteady conductive heat transfer in steam-assisted gravity drainage (SAGD). Petroleum Science and Technology, 0, , 1-17.	0.7	0
151	The influence of lunar surface position on irradiance of moon-based earth radiation observation. Frontiers of Earth Science, 0, , 1.	0.9	3