
Selva Baltan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718690/publications.pdf Version: 2024-02-01

SELVA RALTAN

#	Article	IF	CITATIONS
1	Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron, 2016, 91, 119-132.	8.1	381
2	Metabolic Vulnerability Disposes Retinal Ganglion Cell Axons to Dysfunction in a Model of Glaucomatous Degeneration. Journal of Neuroscience, 2010, 30, 5644-5652.	3.6	135
3	White Matter Vulnerability to Ischemic Injury Increases with Age Because of Enhanced Excitotoxicity. Journal of Neuroscience, 2008, 28, 1479-1489.	3.6	119
4	Age-Related Changes in Axonal and Mitochondrial Ultrastructure and Function in White Matter. Journal of Neuroscience, 2016, 36, 9990-10001.	3.6	108
5	Histone Deacetylase Inhibitors Preserve White Matter Structure and Function during Ischemia by Conserving ATP and Reducing Excitotoxicity. Journal of Neuroscience, 2011, 31, 3990-3999.	3.6	102
6	Expression of Histone Deacetylases in Cellular Compartments of the Mouse Brain and the Effects of Ischemia. Translational Stroke Research, 2011, 2, 411-423.	4.2	79
7	Ischemic Injury to White Matter: An Age-Dependent Process. Neuroscientist, 2009, 15, 126-133.	3.5	55
8	Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health?. Metabolic Brain Disease, 2015, 30, 25-30.	2.9	55
9	Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. Journal of Cell Biology, 2016, 215, 531-542.	5.2	47
10	Novel Protective Effects of Histone Deacetylase Inhibition on Stroke and White Matter Ischemic Injury. Neurotherapeutics, 2013, 10, 798-807.	4.4	41
11	<scp>MS</scp> â€275, a Class I histone deacetylase inhibitor, protects the p53â€deficient mouse against ischemic injury. Journal of Neurochemistry, 2014, 129, 509-515.	3.9	35
12	Histone deacetylase inhibitors preserve function in aging axons. Journal of Neurochemistry, 2012, 123, 108-115.	3.9	34
13	Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochemical Research, 2017, 42, 19-34.	3.3	33
14	Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology, 2016, 110, 626-632.	4.1	24
15	BACE1 regulates the proliferation and cellular functions of Schwann cells. Clia, 2017, 65, 712-726.	4.9	22
16	NOS3 Inhibition Confers Post-Ischemic Protection to Young and Aging White Matter Integrity by Conserving Mitochondrial Dynamics and Miro-2 Levels. Journal of Neuroscience, 2018, 38, 6247-6266.	3.6	20
17	CK2 inhibition confers functional protection to young and aging axons against ischemia by differentially regulating the CDK5 and AKT signaling pathways. Neurobiology of Disease, 2019, 126, 47-61.	4.4	18
18	Excitotoxicity and Mitochondrial Dysfunction Underlie Age-Dependent Ischemic White Matter Injury. Advances in Neurobiology, 2014, 11, 151-170.	1.8	18

Selva Baltan

#	Article	IF	CITATIONS
19	Surviving Anoxia: A Tale of Two White Matter Tracts. Critical Reviews in Neurobiology, 2006, 18, 95-103.	3.1	18
20	CK2 inhibition protects white matter from ischemic injury. Neuroscience Letters, 2018, 687, 37-42.	2.1	10
21	Role of Brain Glycogen During Ischemia, Aging and Cell-to-Cell Interactions. Advances in Neurobiology, 2019, 23, 347-361.	1.8	10
22	Mitochondrial dynamics and preconditioning in white matter. Conditioning Medicine, 2018, 1, 64-72.	1.3	8
23	Ex Vivo Studies of Optic Nerve Axon Electrophysiology. Methods in Molecular Biology, 2020, 2143, 169-177.	0.9	7
24	Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter After Ischemia. NeuroMolecular Medicine, 2019, 21, 484-492.	3.4	6
25	Astrocyte Mitochondria in White-Matter Injury. Neurochemical Research, 2021, 46, 2696-2714.	3.3	6
26	Identification of miRNAs That Mediate Protective Functions of Anti-Cancer Drugs During White Matter Ischemic Injury. ASN Neuro, 2021, 13, 175909142110422.	2.7	6
27	Aging astrocytes metabolically support aging axon function by proficiently regulating astrocyte-neuron lactate shuttle. Experimental Neurology, 2022, 357, 114173.	4.1	6
28	The effect of aging on brain injury and recovery after stroke. Neurobiology of Disease, 2019, 126, 1-2.	4.4	3
29	Age-Dependent Mechanisms of White Matter Injury After Stroke. , 2014, , 373-403.		3
30	Stroke in CNS white matter: Models and mechanisms 2019. Neuroscience Letters, 2019, 711, 134411.	2.1	1
31	Casein Kinase 2 Signaling in White Matter Stroke. Frontiers in Molecular Biosciences, 0, 9, .	3.5	1
32	P3-048: IMPAIRED SYNAPTIC PLASTICITY PRECEDES TAU AGGREGATION IN HTAU MOUSE MODEL OF ALZHEIMER'S DISEASE. , 2014, 10, P646-P646.		0
33	White Matter Pathophysiology. , 2016, , 113-128.		0
34	White Matter Pathophysiology. , 2022, , 103-116.e4.		0
35	lschemic Injury to White Matter: An Age-Dependent Process. Springer Series in Translational Stroke Research, 2016, , 327-343.	0.1	0