Anthony R Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718526/publications.pdf

Version: 2024-02-01

36 papers 2,185 citations

257450 24 h-index 36 g-index

38 all docs 38 docs citations

38 times ranked 2741 citing authors

#	Article	IF	CITATIONS
1	A Nitric Oxide–Inducible Lactate Dehydrogenase Enables ⟨i⟩Staphylococcus aureus⟨ i⟩ to Resist Innate Immunity. Science, 2008, 319, 1672-1676.	12.6	253
2	The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Molecular Microbiology, 2006, 61, 927-939.	2.5	224
3	Functional Modularity of the Arginine Catabolic Mobile Element Contributes to the Success of USA300 Methicillin-Resistant Staphylococcus aureus. Cell Host and Microbe, 2013, 13, 100-107.	11.0	176
4	Arginine catabolic mobile element encoded <i>speG</i> abrogates the unique hypersensitivity of <i>Staphylococcus aureus</i> to exogenous polyamines. Molecular Microbiology, 2011, 82, 9-20.	2.5	138
5	Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant <i>Staphylococcus aureus</i> (CA-MRSA). FEMS Immunology and Medical Microbiology, 2012, 65, 5-22.	2.7	138
6	Nutrient Availability as a Mechanism for Selection of Antibiotic Tolerant Pseudomonas aeruginosa within the CF Airway. PLoS Pathogens, 2010, 6, e1000712.	4.7	119
7	Glycolytic Dependency of High-Level Nitric Oxide Resistance and Virulence in Staphylococcus aureus. MBio, 2015, 6, .	4.1	114
8	Multiple Targets of Nitric Oxide in the Tricarboxylic Acid Cycle of Salmonella enterica Serovar Typhimurium. Cell Host and Microbe, 2011, 10, 33-43.	11.0	112
9	Expanded Glucose Import Capability Affords Staphylococcus aureus Optimized Glycolytic Flux during Infection. MBio, 2016, 7, .	4.1	97
10	Metabolic Stress Drives Keratinocyte Defenses against Staphylococcus aureus Infection. Cell Reports, 2017, 18, 2742-2751.	6.4	70
11	The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection. MBio, 2019, 10, .	4.1	68
12	Identification of a Lactate-Quinone Oxidoreductase in Staphylococcus aureus that is Essential for Virulence. Frontiers in Cellular and Infection Microbiology, 2011, 1, 19.	3.9	66
13	Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLoS Pathogens, 2018, 14, e1006907.	4.7	62
14	The Base Excision Repair System of Salmonella enterica serovar Typhimurium Counteracts DNA Damage by Host Nitric Oxide. PLoS Pathogens, 2009, 5, e1000451.	4.7	60
15	Genome Plasticity of <i>agr</i> -Defective Staphylococcus aureus during Clinical Infection. Infection and Immunity, 2018, 86, .	2.2	50
16	Laboratory Maintenance of Methicillinâ€Resistant <i>Staphylococcus aureus</i> (MRSA). Current Protocols in Microbiology, 2013, 28, Unit 9C.2.	6.5	40
17	Lack of nutritional immunity in diabetic skin infections promotes <i>Staphylococcus aureus</i> virulence. Science Advances, 2020, 6, .	10.3	39
18	Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance. Journal of Bacteriology, 2016, 198, 2043-2055.	2.2	38

#	Article	lF	Citations
19	<i>Staphylococcus aureus</i> Protein A Disrupts Immunity Mediated by Long-Lived Plasma Cells. Journal of Immunology, 2017, 198, 1263-1273.	0.8	36
20	Contribution of the nos-pdt Operon to Virulence Phenotypes in Methicillin-Sensitive Staphylococcus aureus. PLoS ONE, 2014, 9, e108868.	2.5	36
21	Discovery and optimization of a new class of pyruvate kinase inhibitors as potential therapeutics for the treatment of methicillin-resistant Staphylococcus aureus infections. Bioorganic and Medicinal Chemistry, 2014, 22, 1708-1725.	3.0	35
22	Virulence and Metabolism. Microbiology Spectrum, 2019, 7, .	3.0	34
23	CcpA-Independent Glucose Regulation of Lactate Dehydrogenase 1 in Staphylococcus aureus. PLoS ONE, 2013, 8, e54293.	2.5	31
24	<scp><i>S</i></scp> <i>ti>Sti>taphylococcus aureus</i> lactate―and malateâ€quinone oxidoreductases contribute to nitric oxide resistance and virulence. Molecular Microbiology, 2016, 100, 759-773.	2.5	30
25	Method for Preparation and Electroporation of S. aureus and S. epidermidis. Methods in Molecular Biology, 2014, 1373, 51-57.	0.9	28
26	Peroxisome Proliferator-Activated Receptor \hat{I}^3 Is Essential for the Resolution of Staphylococcus aureus Skin Infections. Cell Host and Microbe, 2018, 24, 261-270.e4.	11.0	27
27	Mammalian target of rapamycin regulates a hyperresponsive state in pulmonary neutrophils late after burn injury. Journal of Leukocyte Biology, 2018, 103, 909-918.	3.3	17
28	Development of humanized mouse and rat models with full-thickness human skin and autologous immune cells. Scientific Reports, 2020, 10, 14598.	3.3	13
29	The Nutritional Environment Is Sufficient To Select Coexisting Biofilm and Quorum Sensing Mutants of Pseudomonas aeruginosa. Journal of Bacteriology, 2022, 204, JB0044421.	2.2	8
30	<i>Staphylococcus aureus</i> genotype variation among and within periprosthetic joint infections. Journal of Orthopaedic Research, 2022, 40, 420-428.	2.3	7
31	The Intersection of the Staphylococcus aureus Rex and SrrAB Regulons: an Example of Metabolic Evolution That Maximizes Resistance to Immune Radicals. MBio, 2021, 12, e0218821.	4.1	7
32	The <i>Staphylococcus aureus</i> toxin–antitoxin system YefM–YoeB is associated with antibiotic tolerance and extracellular dependent biofilm formation. Journal of Bone and Joint Infection, 2021, 6, 241-253.	1.5	5
33	Mechanisms Behind the Indirect Impact of Metabolic Regulators on Virulence Factor Production in Staphylococcus aureus. Microbiology Spectrum, 2022, 10, .	3.0	3
34	Editorial overview: Host-microbe interactions: bacteria: Secretion systems, effectors, immunity and metabolism. Current Opinion in Microbiology, 2016, 29, v-vii.	5.1	2
35	Early-Career Scientists Shaping the New Microbiology. Infection and Immunity, 2020, 88, .	2.2	1
36	Virulence and Metabolism. , 0, , 687-698.		0