Paul F Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordination Geometry and Oxidation State Requirements of Corner-Sharing MnO ₆ Octahedra for Water Oxidation Catalysis: An Investigation of Manganite (γ-MnOOH). ACS Catalysis, 2016, 6, 2089-2099.	11.2	156
2	Structural Requirements in Lithium Cobalt Oxides for the Catalytic Oxidation of Water. Angewandte Chemie - International Edition, 2012, 51, 1616-1619.	13.8	150
3	What Determines Catalyst Functionality in Molecular Water Oxidation? Dependence on Ligands and Metal Nuclearity in Cobalt Clusters. Inorganic Chemistry, 2014, 53, 2113-2121.	4.0	70
4	Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society, 2015, 137, 15460-15468.	13.7	64
5	Probing the Li Insertion Mechanism of ZnFe ₂ O ₄ in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study. Chemistry of Materials, 2017, 29, 4282-4292.	6.7	62
6	Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear ruthenium(ii)–vanadium(iv) complexes. Dalton Transactions, 2013, 42, 11881.	3.3	43
7	Holy Grails in Chemistry: Investigating and Understanding Fast Electron/Cation Coupled Transport within Inorganic Ionic Matrices. Accounts of Chemical Research, 2017, 50, 544-548.	15.6	42
8	Surface and Structural Investigation of a MnO _{<i>x</i>} Birnessiteâ€Type Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry - A European Journal, 2015, 21, 14218-14228.	3.3	29
9	X-ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry C, 2016, 120, 3326-3333.	3.1	24
10	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of Chemistry, 2012, 65, 577.	0.9	22
11	The Electrochemistry of Fe ₃ O ₄ /Polypyrrole Composite Electrodes in Lithium-Ion Cells: The Role of Polypyrrole in Capacity Retention. Journal of the Electrochemical Society, 2017, 164, A6260-A6267.	2.9	21
12	Ionic liquid hybrids: Progress toward non-corrosive electrolytes with high-voltage oxidation stability for magnesium-ion based batteries. Electrochimica Acta, 2016, 219, 267-276.	5.2	14
13	(De)lithiation of spinel ferrites Fe ₃ O ₄ , MgFe ₂ O ₄ , and ZnFe ₂ O ₄ : a combined spectroscopic, diffraction and theory study. Physical Chemistry Chemical Physics, 2020, 22, 26200-26215.	2.8	13
14	Capacity Retention for (De)lithiation of Silver Containing α-MnO ₂ : Impact of Structural Distortion and Transition Metal Dissolution. Journal of the Electrochemical Society, 2018, 165, A2849-A2858.	2.9	9
15	Do multinuclear 3d metal catalysts achieve O–O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co4O4]n+. Chem Catalysis, 2021, 1, 407-422.	6.1	9
16	Tailoring the Ag ⁺ Content within the Tunnels and on the Exposed Surfaces of α-MnO ₂ Nanowires: Impact on Impedance and Electrochemistry. Journal of the Electrochemical Society, 2017, 164, A6163-A6170.	2.9	8
17	Entropy and enthalpy contributions to the kinetics of proton coupled electron transfer to the Mn ₄ O ₄ (O ₂ PPh ₂) ₆ cubane. Physical Chemistry Chemical Physics, 2014, 16, 11843-11847.	2.8	6
18	The Effect of Silver Ion Occupancy on Hollandite Lattice Structure. MRS Advances, 2018, 3, 547-552.	0.9	6

PAUL F SMITH

#	Article	IF	CITATIONS
19	Deliberately Designed Atomic-Level Silver-Containing Interface Results in Improved Rate Capability and Utilization of Silver Hollandite for Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 400-407.	8.0	5
20	Vanadium-Substituted Tunnel Structured Silver Hollandite (Ag _{1.2} V _{<i>x</i>} Mn _{8–<i>x</i>} O ₁₆): Impact on Morphology and Electrochemistry. Inorganic Chemistry, 2020, 59, 3783-3793.	4.0	4
21	Reduction of silver ions in molybdates: elucidation of framework acidity as the factor controlling charge balance mechanisms in aqueous zinc-ion electrolyte. RSC Advances, 2021, 11, 39523-39533.	3.6	2
22	Reaction of boronic acids with tetrafluoroborate? It depends on the acidity. Inorganic Chemistry Communication, 2014, 48, 144-146.	3.9	1
23	Review of the Stability/Capacity Trade-off in Silver Hollandite Lithium Battery Cathodes. MRS Advances, 2018, 3, 767-771.	0.9	1
24	Application of a Multiscale, Molecular- to Meso-Scale Perspective towards the Investigation of Fe 3 O 4 as an Energy Storage Material. ECS Transactions, 2017, 77, 249-255.	0.5	0