Michele Back

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7718010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast and non-destructive neutron activation analysis for simultaneous determination of TiO2 and SiO2 in sunscreens with attention to regulatory and research issues. Analytica Chimica Acta, 2022, 1200, 339601.	2.6	5
2	Facile Cellulase Immobilisation on Bioinspired Silica. Nanomaterials, 2022, 12, 626.	1.9	6
3	Boltzmann Thermometry in Cr ³⁺ â€Doped Ga ₂ O ₃ Polymorphs: The Structure Matters!. Advanced Optical Materials, 2021, 9, 2100033.	3.6	90
4	Predicting the Optical Pressure Sensitivity of ² E → ⁴ A ₂ Spin-Flip Transition in Cr ³⁺ -Doped Crystals. Chemistry of Materials, 2021, 33, 3379-3385.	3.2	28
5	High-Pressure Photoluminescence Properties of Cr ³⁺ -Doped LaGaO ₃ Perovskites Modulated by Pressure-Induced Phase Transition. Inorganic Chemistry, 2021, 60, 19253-19262.	1.9	12
6	Sodium niobate based hierarchical 3D perovskite nanoparticle clusters. Dalton Transactions, 2020, 49, 15195-15203.	1.6	3
7	Confined-Melting-Assisted Synthesis of Bismuth Silicate Glass-Ceramic Nanoparticles: Formation and Optical Thermometry Investigation. ACS Applied Materials & Interfaces, 2020, 12, 55195-55204.	4.0	35
8	Pushing the Limit of Boltzmann Distribution in Cr ³⁺ -Doped CaHfO ₃ for Cryogenic Thermometry. ACS Applied Materials & Interfaces, 2020, 12, 38325-38332.	4.0	116
9	Upconversion-mediated Boltzmann thermometry in double-layered Bi ₂ SiO ₅ :Yb ³⁺ ,Tm ³⁺ @SiO ₂ hollow nanoparticles. Journal of Materials Chemistry C, 2020, 8, 7828-7836.	2.7	61
10	Effective Ratiometric Luminescent Thermal Sensor by Cr ³⁺ â€Doped Mullite Bi ₂ Al ₄ O ₉ with Robust and Reliable Performances. Advanced Optical Materials, 2020, 8, 2000124.	3.6	114
11	Lanthanide-Doped Bi ₂ SiO ₅ @SiO ₂ Core–Shell Upconverting Nanoparticles for Stable Ratiometric Optical Thermometry. ACS Applied Nano Materials, 2020, 3, 2594-2604.	2.4	55
12	Ratiometric Luminescent Thermometers with a Customized Phase-Transition-Driven Fingerprint in Perovskite Oxides. ACS Applied Materials & amp; Interfaces, 2019, 11, 38937-38945.	4.0	57
13	Lanthanide-Doped Bismuth-Based Fluoride Nanocrystalline Particles: Formation, Spectroscopic Investigation, and Chemical Stability. Chemistry of Materials, 2019, 31, 8504-8514.	3.2	29
14	Bi ₂ SiO ₅ @g-SiO ₂ upconverting nanoparticles: a bismuth-driven core–shell self-assembly mechanism. Nanoscale, 2019, 11, 675-687.	2.8	31
15	Uncovering the Origin of the Emitting States in Bi ³⁺ -Activated CaMO ₃ (M = Zr,) Tj E Chemistry C, 2019, 123, 14677-14688.	TQq1 1 0.7 1.5	84314 rgBT 44
16	Bismuth titanate-based UV filters embedded mesoporous silica nanoparticles: Role of bismuth concentration in the self-sealing process. Journal of Colloid and Interface Science, 2019, 549, 1-8.	5.0	24
17	Control of silver clustering for broadband Er3+ luminescence sensitization in Er and Ag co-implanted silica. Journal of Luminescence, 2018, 197, 104-111.	1.5	27
18	Insight into the Upconversion Luminescence of Highly Efficient Lanthanide-Doped Bi ₂ O ₃ Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 7389-7398.	1.5	28

MICHELE BACK

#	Article	IF	CITATIONS
19	Ratiometric optical thermometry using deep red luminescence from 4T2 and 2E states of Cr3+ in ZnGa2O4 host. Optical Materials, 2018, 85, 510-516.	1.7	97
20	Revisiting Cr ³⁺ -Doped Bi ₂ Ga ₄ O ₉ Spectroscopy: Crystal Field Effect and Optical Thermometric Behavior of Near-Infrared-Emitting Singly-Activated Phosphors. ACS Applied Materials & Interfaces, 2018, 10, 41512-41524.	4.0	124
21	Tuning the upconversion light emission by bandgap engineering in bismuth oxide-based upconverting nanoparticles. Nanoscale, 2017, 9, 6353-6361.	2.8	33
22	Orthorhombic phase stabilization and transformation phase process in zirconia tantalum-doped powders and spark plasma sintering systems. Journal of the European Ceramic Society, 2017, 37, 3393-3401.	2.8	6
23	Formation and Controlled Growth of Bismuth Titanate Phases into Mesoporous Silica Nanoparticles: An Efficient Self-Sealing Nanosystem for UV Filtering in Cosmetic Formulation. ACS Applied Materials & Interfaces, 2017, 9, 1913-1921.	4.0	53
24	Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells. Journal Physics D: Applied Physics, 2016, 49, 295601.	1.3	16
25	Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr ³⁺ -Doped Bismuth-Based Gallate Host. Chemistry of Materials, 2016, 28, 8347-8356.	3.2	224
26	Determining europium compositional fluctuations in partially stabilized zirconia nanopowders: a non-line-broadening-based method. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 29-38.	0.5	3
27	Energy transfer in color-tunable water-dispersible Tb–Eu codoped CaF ₂ nanocrystals. Journal of Materials Chemistry C, 2016, 4, 1906-1913.	2.7	40
28	Energy Transfer in Bi- and Er-Codoped Y ₂ O ₃ Nanocrystals: An Effective System for Rare Earth Fluorescence Enhancement. Journal of Physical Chemistry C, 2014, 118, 30071-30078.	1.5	43
29	Oxygen Hole States in Zirconia Lattices: Quantitative Aspects of Their Cathodoluminescence Emission. Journal of Physical Chemistry A, 2014, 118, 9828-9836.	1.1	26
30	Unexpected behavior of the 1.54î¼m luminescence in Er-doped silica films. Journal of Non-Crystalline Solids, 2014, 401, 186-190.	1.5	4
31	Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	36
32	Unexpected optical activity of cerium in Y ₂ O ₃ :Ce ³⁺ , Yb ³⁺ , Er ³⁺ up and down-conversion system. Dalton Transactions, 2013, 42, 16837-16845.	1.6	25
33	Off-Stoichiometry Spectroscopic Investigations of Pure Amorphous Silica and N-Doped Silica Thin Films. Journal of Physical Chemistry C, 2013, 117, 3475-3482.	1.5	8
34	Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	42
35	Er-doped alumina crystalline films deposited by radiofrequency magnetron co-sputtering. Optical Materials, 2011, 33, 1135-1138.	1.7	13