
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresource Technology, 2008, 99, 6683-6687.	4.8	283
2	Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials, 2015, 5, 1004-1021.	1.9	246
3	Potential applications of antioxidant lignins from different sources. Industrial Crops and Products, 2008, 27, 220-223.	2.5	175
4	Lignins and Their Derivatives with Beneficial Effects on Human Health. International Journal of Molecular Sciences, 2017, 18, 1219.	1.8	175
5	InÂvitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials, 2013, 34, 2758-2772.	5.7	166
6	Alternative Methods for Eye and Skin Irritation Tests: An Overview. Journal of Pharmaceutical Sciences, 2008, 97, 46-59.	1.6	148
7	Cationic Surfactants Derived from Lysine: Effects of Their Structure and Charge Type on Antimicrobial and Hemolytic Activities. Journal of Medicinal Chemistry, 2011, 54, 989-1002.	2.9	140
8	Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale, 2015, 7, 6045-6058.	2.8	139
9	Fructose-6-phosphate Aldolase in Organic Synthesis:  Preparation ofd-Fagomine,N-Alkylated Derivatives, and Preliminary Biological Assays. Organic Letters, 2006, 8, 6067-6070.	2.4	136
10	Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens. Toxicology in Vitro, 2009, 23, 789-796.	1.1	121
11	Cationic surfactants from lysine: Synthesis, micellization and biological evaluation. European Journal of Medicinal Chemistry, 2009, 44, 1884-1892.	2.6	113
12	Chemical Structure/Property Relationship in Single-Chain Arginine Surfactants. Langmuir, 2001, 17, 5071-5075.	1.6	95
13	pH-Sensitive Surfactants from Lysine: Assessment of Their Cytotoxicity and Environmental Behavior. Langmuir, 2012, 28, 5900-5912.	1.6	89
14	Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Industrial Crops and Products, 2014, 58, 104-110.	2.5	74
15	Role of p38 MAPK in the selective release of IL-8 induced by chemical allergen in naÃ ⁻ ve THP-1 cells. Toxicology in Vitro, 2008, 22, 386-395.	1.1	67
16	Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines. Food and Chemical Toxicology, 2010, 48, 70-75.	1.8	65
17	Applicability of lignins from different sources as antioxidants based on the protective effects on lipid peroxidation induced by oxygen radicals. Industrial Crops and Products, 2009, 30, 184-187.	2.5	64
18	Highly Galloylated Tannin Fractions from Witch Hazel (<i>Hamamelis virginiana</i>) Bark: Electron Transfer Capacity, In Vitro Antioxidant Activity, and Effects on Skin-Related Cells. Chemical Research in Toxicology, 2008, 21, 696-704.	1.7	62

#	Article	IF	CITATIONS
19	Present and future of <i>in vitro</i> immunotoxicology in drug development. Journal of Immunotoxicology, 2010, 7, 255-267.	0.9	61
20	Assessment of primary eye and skin irritants by in vitro cytotoxicity and phototoxicity models: an in vitro approach of new arginine-based surfactant-induced irritation. Toxicology, 2004, 197, 229-237.	2.0	60
21	Further development of the NCTC 2544 IL-18 assay to identify in vitro contact allergens. Toxicology in Vitro, 2011, 25, 724-732.	1.1	60
22	Physicochemical and toxicological properties of novel amino acid-based amphiphiles and their spontaneously formed catanionic vesicles. Colloids and Surfaces B: Biointerfaces, 2009, 72, 80-87.	2.5	59
23	Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 127-136.	1.7	57
24	Biocompatible surfactants from renewable hydrophiles. European Journal of Lipid Science and Technology, 2010, 112, 110-121.	1.0	52
25	Nanocarriers for Delivery of Antioxidants on the Skin. Cosmetics, 2015, 2, 342-354.	1.5	51
26	Use of IL-8 release and p38 MAPK activation in THP-1 cells to identify allergens and to assess their potency in vitro. Toxicology in Vitro, 2010, 24, 1803-1809.	1.1	50
27	In vitro studies of the hemolytic activity of microemulsions in human erythrocytes. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39, 1063-1067.	1.4	49
28	PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids and Surfaces B: Biointerfaces, 2016, 138, 117-127.	2.5	48
29	NCTC 2544 and IL-18 production: A tool for the identification of contact allergens. Toxicology in Vitro, 2013, 27, 1127-1134.	1.1	47
30	Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications. International Journal of Pharmaceutics, 2011, 420, 51-58.	2.6	46
31	The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomaterialia, 2011, 7, 2846-2856.	4.1	46
32	In Vitro Comparative Skin Irritation Induced by Nano and Non-Nano Zinc Oxide. Nanomaterials, 2017, 7, 56.	1.9	46
33	Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies. Nanomaterials, 2014, 4, 454-484.	1.9	42
34	Assessment of the potential irritation and photoirritation of novel amino acid-based surfactants by in vitro methods as alternative to the animal tests. Toxicology, 2004, 201, 87-93.	2.0	39
35	Hemolysis and antihemolysis induced by amino acid-based surfactants. Toxicology Letters, 2007, 169, 177-184.	0.4	39
36	Low cytotoxicity of creams and lotions formulated with Buriti oil (Mauritia flexuosa) assessed by the neutral red release test. Food and Chemical Toxicology, 2008, 46, 2776-2781.	1.8	39

#	Article	IF	CITATIONS
37	Comparative Study of the Cytotoxicity Induced by Antioxidant Epicatechin Conjugates Obtained from Grape. Journal of Agricultural and Food Chemistry, 2006, 54, 6945-6950.	2.4	37
38	In vitro study of the antioxidant and immunomodulatory activity of aqueous infusion of Bidens pilosa. Journal of Ethnopharmacology, 2004, 93, 319-323.	2.0	36
39	Low potential ocular irritation of arginine-based gemini surfactants and their mixtures with nonionic and zwitterionic surfactants. Pharmaceutical Research, 2003, 20, 1697-1701.	1.7	34
40	Comparative Antioxidant and Cytotoxic Effect of Procyanidin Fractions from Grape and Pine. Chemical Research in Toxicology, 2007, 20, 1543-1548.	1.7	34
41	Protection against oxidative damage in human erythrocytes and preliminary photosafety assessment of Punica granatum seed oil nanoemulsions entrapping polyphenol-rich ethyl acetate fraction. Toxicology in Vitro, 2015, 30, 421-428.	1.1	31
42	A synthetic alternative to natural lecithins with antimicrobial properties. Colloids and Surfaces B: Biointerfaces, 2004, 35, 235-242.	2.5	28
43	Ontogenetic expression and regulation of Na+-d-glucose cotransporter in jejunum of domestic chicken. American Journal of Physiology - Renal Physiology, 2002, 282, G559-G564.	1.6	25
44	Immunomodulatory Activity of a New Family of Antioxidants Obtained from Grape Polyphenols. Journal of Agricultural and Food Chemistry, 2004, 52, 7297-7299.	2.4	25
45	Pharmacological Applications of Lignins and Lignins Related Compounds: An Overview. Current Organic Chemistry, 2012, 16, 1863-1870.	0.9	25
46	Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	25
47	Inclusion of a pH-responsive amino acid-based amphiphile in methotrexate-loaded chitosan nanoparticles as a delivery strategy in cancer therapy. Amino Acids, 2016, 48, 157-168.	1.2	25
48	Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length. Amino Acids, 2012, 43, 1203-1215.	1.2	24
49	Potential use of Cytisus scoparius extracts in topical applications for skin protection against oxidative damage. Journal of Photochemistry and Photobiology B: Biology, 2013, 125, 83-89.	1.7	24
50	New cationic nanovesicular systems containing lysine-based surfactants for topical administration: Toxicity assessment using representative skin cell lines. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 33-43.	2.0	22
51	Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	22
52	Isoeugenol destabilizes IL-8 mRNA expression in THP-1 cells through induction of the negative regulator of mRNA stability tristetraprolin. Archives of Toxicology, 2012, 86, 239-248.	1.9	20
53	Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources. Toxicology in Vitro, 2014, 28, 120-124.	1.1	20
54	Evaluation of Anti-Tyrosinase and Antioxidant Properties of Four Fern Species for Potential Cosmetic Applications. Forests, 2019, 10, 179.	0.9	20

#	Article	IF	CITATIONS
55	Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery. Materials Science and Engineering C, 2015, 57, 100-106.	3.8	19
56	Alternative Methods to Animal Testing for the Safety Evaluation of Cosmetic Ingredients: An Overview. Cosmetics, 2017, 4, 30.	1.5	19
57	Biobased Epicatechin Conjugates Protect Erythrocytes and Nontumoral Cell Lines from H2O2-Induced Oxidative Stress. Journal of Agricultural and Food Chemistry, 2009, 57, 4459-4465.	2.4	18
58	Chitosan-tripolyphosphate nanoparticles functionalized with a pH-responsive amphiphile improved the in vitro antineoplastic effects of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2016, 147, 326-335.	2.5	18
59	Phospholipid Bilayer-Perturbing Properties Underlying Lysis Induced by pH-Sensitive Cationic Lysine-Based Surfactants in Biomembranes. Langmuir, 2012, 28, 11687-11698.	1.6	17
60	Antioxidant comparative effects of two grape pomace Mexican extracts from vineyards on erythrocytes. Food Chemistry, 2016, 194, 1081-1088.	4.2	17
61	Valuable Polyphenolic Antioxidants from Wine Vinasses. Food and Bioprocess Technology, 2012, 5, 2708-2716.	2.6	16
62	Biological safety studies of gemifloxacin mesylate and related substances. Photochemical and Photobiological Sciences, 2013, 12, 805-812.	1.6	16
63	Comparative evaluation of cytotoxicity and phototoxicity of mono and diacylglycerol amino acid-based surfactants. Food and Chemical Toxicology, 2008, 46, 3837-3841.	1.8	15
64	Establishment of an in vitro photoallergy test using NCTC2544 cells and IL-18 production. Toxicology in Vitro, 2013, 27, 103-110.	1.1	15
65	Preparation, characterization and in vitro cytotoxicity study of dronedarone hydrochloride inclusion complexes. Materials Science and Engineering C, 2019, 100, 48-61.	3.8	14
66	Polypodium vulgare L. (Polypodiaceae) as a Source of Bioactive Compounds: Polyphenolic Profile, Cytotoxicity and Cytoprotective Properties in Different Cell Lines. Frontiers in Pharmacology, 2021, 12, 727528.	1.6	14
67	Role of Galloylation and Polymerization in Cytoprotective Effects of Polyphenolic Fractions against Hydrogen Peroxide Insult. Journal of Agricultural and Food Chemistry, 2011, 59, 2113-2119.	2.4	13
68	NCTC 2544 and IL-18 production: A tool for the in vitro identification of photoallergens. Toxicology in Vitro, 2014, 28, 13-17.	1.1	13
69	Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity inin vitrocytotoxicity and intracellular delivery. Nanotoxicology, 2014, 8, 404-421.	1.6	13
70	Melanogenesis and Melasma Treatment. Cosmetics, 2021, 8, 82.	1.5	13
71	Chemoenzymatic Synthesis and Antimicrobial and Haemolytic Activities of Amphiphilic Bis(phenylacetylarginine) Derivatives. ChemMedChem, 2006, 1, 1091-1098.	1.6	12
72	Novel epicatechin derivatives with antioxidant activity modulate interleukin-1β release in lipopolysaccharide-stimulated human blood. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5031-5034.	1.0	11

#	Article	IF	CITATIONS
73	Human hemoglobin denaturation as an alternative to the draize test for predicting eye irritancy of surfactants. Regulatory Toxicology and Pharmacology, 2008, 52, 89-93.	1.3	9
74	Cytoprotective Effects of Polyphenols against Oxidative Damage. , 2014, , 275-288.		9
75	Morphometric study of the guinea pig small intestine during development. Microscopy Research and Technique, 2004, 63, 206-214.	1.2	8
76	Protective effect of guarana-loaded liposomes on hemolytic activity. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110636.	2.5	7
77	Multifunctional PLCA nanoparticles combining transferrin-targetability and pH-stimuli sensitivity enhanced doxorubicin intracellular delivery and in vitro antineoplastic activity in MDR tumor cells. Toxicology in Vitro, 2021, 75, 105192.	1.1	7
78	Potential eye irritation of some "biodegradable―liquid scintillation cocktails determined in vitro. Food and Chemical Toxicology, 2004, 42, 1287-1290.	1.8	5
79	Nanotechnology Approaches to Target Endosomal pH: A Promising Strategy for an Efficient Intracellular Drug, Gene and Protein Delivery. Drug Delivery Letters, 2014, 4, 2-11.	0.2	5
80	Comparative evaluation of the hepatotoxicity, phototoxicity and photosensitizing potential of dronedarone hydrochloride and its cyclodextrin-based inclusion complexes. Photochemical and Photobiological Sciences, 2019, 18, 1565-1575.	1.6	5
81	TNFα Measurement in Rat and Human Whole Blood as an in vitro Method to Assay Pyrogens and its Inhibition by Dexamethasone and Erythromycin. Journal of Pharmaceutical Sciences, 2004, 93, 2718-2723.	1.6	4
82	Overcoming MDR by Associating Doxorubicin and pH-Sensitive PLGA Nanoparticles Containing a Novel Organoselenium Compound—An In Vitro Study. Pharmaceutics, 2022, 14, 80.	2.0	4
83	Effects of Dodine (n-Dodecylguanidine Acetate) Subchronic Treatment on Intestinal Morphology and Brush Border Enzymatic Activity in Rats. Pesticide Biochemistry and Physiology, 1998, 62, 96-101.	1.6	3
84	Hematological and Biochemical Parameters in the Rat Following Subchronic Oral Administration of Dodine (n-Dodecylguanidine Acetate). Pesticide Biochemistry and Physiology, 1999, 65, 151-159.	1.6	3
85	ALTERATIONS OF MALE WISTAR RAT JEJUNUM INDUCED BY DODINE n -DODECYLGUANIDINE ACETATE. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1997, 52, 545-556.	1.1	0
86	E-LEARNING OF ANATOMY: VIRTUAL PLATFORMS AS A SURROGATE FOR THE IN-PERSON ANATOMY LABORATORY CLASSROOM. EDULEARN Proceedings, 2022, , .	0.0	0