João Flávio da Silveira Petruci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717676/publications.pdf

Version: 2024-02-01

42 papers 986

471509 17 h-index 31 g-index

42 all docs

42 docs citations

times ranked

42

981 citing authors

#	Article	IF	CITATIONS
1	Novel approaches for colorimetric measurements in analytical chemistry – A review. Analytica Chimica Acta, 2020, 1135, 187-203.	5.4	140
2	A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass. Scientific Reports, 2017, 7, 41596.	3.3	138
3	Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time. Analyst, The, 2014, 139, 198-203.	3.5	70
4	Online Analysis of H $<$ sub $>$ 2 $<$ /sub $>$ S and SO $<$ sub $>$ 2 $<$ /sub $>$ via Advanced Mid-Infrared Gas Sensors. Analytical Chemistry, 2015, 87, 9605-9611.	6.5	49
5	Portable and Disposable Paper-Based Fluorescent Sensor for In Situ Gaseous Hydrogen Sulfide Determination in Near Real-Time. Analytical Chemistry, 2016, 88, 11714-11719.	6.5	46
6	Determination of 2-Methylimidazole and 4-Methylimidazole in Caramel Colors by Capillary Electrophoresis. Journal of Agricultural and Food Chemistry, 2013, 61, 2263-2267.	5.2	38
7	Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors. Scientific Reports, 2013, 3, 3174.	3.3	36
8	Sensitive luminescent paper-based sensor for the determination of gaseous hydrogen sulfide. Analytical Methods, 2015, 7, 2687-2692.	2.7	34
9	Colorimetric paper-based device for gaseous hydrogen cyanide quantification based on absorbance measurements. Sensors and Actuators B: Chemical, 2018, 268, 392-397.	7.8	33
10	RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta, 2022, 241, 123244.	5.5	32
11	Development of a simple method for determination of NO2 in air using digital scanner images. Talanta, 2015, 140, 73-80.	5.5	30
12	3D-printing in forensic electrochemistry: Atropine determination in beverages using an additively manufactured graphene-polylactic acid electrode. Microchemical Journal, 2021, 167, 106324.	4.5	26
13	Optimized design of substrate-integrated hollow waveguides for mid-infrared gas analyzers. Journal of Optics (United Kingdom), 2014, 16, 094006.	2.2	25
14	iCONVERT: An Integrated Device for the UV-Assisted Determination of H ₂ S via Mid-Infrared Gas Sensors. Analytical Chemistry, 2015, 87, 9580-9583.	6.5	24
15	3D-printed and fully portable fluorescent-based platform for sulfide determination in waters combining vapor generation extraction and digital images treatment. Talanta, 2021, 222, 121558.	5.5	24
16	A new palladium chelate compound for determination of sulfide. Microchemical Journal, 2013, 106, 368-372.	4.5	23
17	Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments. Analytica Chimica Acta, 2021, 1143, 1-8.	5.4	20
18	Determination of Nitrite and Nitrate in Brazilian Meats Using High Shear Homogenization. Food Analytical Methods, 2012, 5, 637-642.	2.6	19

#	Article	IF	Citations
19	Analytical methods applied for ozone gas detection: A review. TrAC - Trends in Analytical Chemistry, 2022, 149, 116552.	11.4	19
20	Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235 nm. Journal of Chromatography A, 2017, 1512, 143-146.	3.7	17
21	Chemical QR Code: A simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chemistry, 2021, 350, 129243.	8.2	17
22	Real-Time and Simultaneous Monitoring of NO, NO, and NO Using Substrate-Integrated Hollow Waveguides Coupled to a Compact Fourier Transform Infrared (FT-IR) Spectrometer. Applied Spectroscopy, 2019, 73, 98-103.	2.2	16
23	Paper-based analytical device for colorimetric detection of Cu2+ in Brazilian sugarcane spirits by digital image treatment. Microchemical Journal, 2020, 159, 105463.	4.5	14
24	\hat{l} AOPTO: A microfluidic paper-based optoelectronic tongue as presumptive tests for the discrimination of alkaloid drugs for forensic purposes. Analytica Chimica Acta, 2021, 1187, 339141.	5.4	12
25	A Hyphenated Preconcentrator-Infrared-Hollow-Waveguide Sensor System for N2O Sensing. Scientific Reports, 2018, 8, 5909.	3.3	11
26	Monitoring Ozone Using Portable Substrate-Integrated Hollow Waveguide-Based Absorbance Sensors in the Ultraviolet Range. ACS Measurement Science Au, 2022, 2, 39-45.	4.4	11
27	An IoT optical sensor for photometric determination of oxalate in infusions. Microchemical Journal, 2021, 168, 106466.	4.5	9
28	From Light Pipes to Substrate-Integrated Hollow Waveguides for Gas Sensing: A Review. ACS Measurement Science Au, 2021, 1, 97-109.	4.4	9
29	Simultaneous determination of scopolamine and butylscopolamine in pharmaceutical and beverage samples by capillary zone electrophoresis. Microchemical Journal, 2022, 172, 106985.	4.5	9
30	The use of in silico models for the rationalization of molecularly imprinted polymer synthesis. European Polymer Journal, 2022, 166, 111024.	5.4	9
31	A new luminescent silver-based probe for on/off sulfide determination. Inorganic Chemistry Communication, 2016, 63, 93-95.	3.9	5
32	Active-electrode biosensor of SnO ₂ nanowire for cyclodextrin detection from microbial enzyme. Nanotechnology, 2020, 31, 165501.	2.6	5
33	An indirect electrochemical method for aqueous sulfide determination in freshwaters using a palladium chelate as a selective sensor. Talanta, 2021, 231, 122413.	5.5	5
34	Paper-based colorimetric sensor array for the rapid and on-site discrimination of green tea samples based on the flavonoid composition. Analytical Methods, 2022, 14, 2471-2478.	2.7	4
35	Desenvolvimento e validação de método analÃŧico para determinação de benzoato, sorbato, metil e propilparabenos em produtos alimentÃcios utilizando a eletroforese capilar. Quimica Nova, 2011, 34, 1177-1181.	0.3	3
36	Capillary electrophoresis to approach sorbate usage in processed meat products in Brazil. Journal of Food Science and Technology, 2018, 55, 443-447.	2.8	2

#	Article	IF	CITATIONS
37	Nanomaterials in Air Pollution Trace Detection. , 2019, , 427-447.		1
38	Optical Gas Sensors for Exhaled Breath Analysis. , 0, , .		1
39	Methylene Violet 3 RAX Dye as a New Reagent for the Determination of Nitrite in Cured Meats and Vegetables. Journal of the Brazilian Chemical Society, 0, , .	0.6	О
40	UV/Vis-Based Optical Sensors for Gaseous and Volatile Analytes. , 2021, , .		0
41	A Green Analytical Methodology for Detecting Adulteration in Automotive Urea-SCR Products Using Microfluidic-Paper Analytical Devices. Sustainability, 2022, 14, 3363.	3.2	O
42	Heat-based procedure for detectability enhancement of colorimetric paper-based spot tests. Microchemical Journal, 2022, 177, 107320.	4.5	O