Ronald Jabs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/771766/publications.pdf

Version: 2024-02-01

33 2,167 21 33
papers citations h-index g-index

34 34 34 2196
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Neuron-glia synapses in the brain. Brain Research Reviews, 2010, 63, 130-137.	9.1	168
2	Serotonin stimulates secretion of exosomes from microglia cells. Glia, 2015, 63, 626-634.	2.5	160
3	Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus, 1994, 4, 19-35.	0.9	154
4	Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia, 1995, 15, 173-187.	2.5	144
5	Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia, 2001, 36, 11-21.	2.5	139
6	Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. Journal of Cell Science, 2005, 118, 3791-3803.	1.2	139
7	Functional and Molecular Properties of Human Astrocytes in Acute Hippocampal Slices Obtained from Patients with Temporal Lobe Epilepsy. Epilepsia, 2000, 41, S181-S184.	2.6	129
8	Kainate activates Ca2+-permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices. Pflugers Archiv European Journal of Physiology, 1994, 426, 310-319.	1.3	122
9	Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells. Cerebral Cortex, 2015, 25, 3420-3433.	1.6	108
10	Astrocytic function and its alteration in the epileptic brain. Epilepsia, 2008, 49, 3-12.	2.6	99
11	Gray Matter NG2 Cells Display Multiple Ca2+-Signaling Pathways and Highly Motile Processes. PLoS ONE, 2011, 6, e17575.	1.1	99
12	Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nature Communications, 2012, 3, 1076.	5.8	92
13	Identification of purinergic receptors in retinal ganglion cells. Molecular Brain Research, 2001, 92, 177-180.	2.5	90
14	Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia, 2007, 55, 1648-1655.	2.5	73
15	Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Mýller cells of the rat retina. Molecular Brain Research, 2000, 76, 205-210.	2.5	70
16	Expression of purinergic receptors in bipolar cells of the rat retina. Molecular Brain Research, 2000, 76, 415-418.	2.5	52
17	Properties of human astrocytes and NG2 glia. Glia, 2020, 68, 756-767.	2.5	46
18	Expression of the Â2-Subunit Distinguishes Synaptic and Extrasynaptic GABAA Receptors in NG2 Cells of the Hippocampus. Journal of Neuroscience, 2013, 33, 12030-12040.	1.7	43

#	Article	IF	CITATIONS
19	GABAA receptor agonists modulate K+ currents in adult hippocampal glial cells in situ. Glia, 1999, 26, 129-138.	2.5	30
20	Dual reporter approaches for identification of Cre efficacy and astrocyte heterogeneity. FASEB Journal, 2012, 26, 4576-4583.	0.2	28
21	Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites. Cell Reports, 2021, 34, 108642.	2.9	27
22	The NG2 Protein Is Not Required for Glutamatergic Neuron–NG2 Cell Synaptic Signaling. Cerebral Cortex, 2016, 26, 51-57.	1.6	22
23	Maternal de novo triple mosaicism for two single OCRL nucleotide substitutions (c.1736A>T,) Tj ETQq1 1 0.78	843.14 rgB1	Γ /Qverlock
24	Functional anisotropic panglial networks in the lateral superior olive. Glia, 2016, 64, 1892-1911.	2.5	19
25	Migration of Interneuron Precursors in the Nascent Cerebellar Cortex. Cerebellum, 2018, 17, 62-71.	1.4	19
26	Barreloid Borders and Neuronal Activity Shape Panglial Gap Junction-Coupled Networks in the Mouse Thalamus. Cerebral Cortex, 2016, 28, 213-222.	1.6	16
27	Synaptic input as a directional cue for migrating interneuron precursors. Development (Cambridge), 2017, 144, 4125-4136.	1.2	15
28	Functional characterization of P2X3receptors fused with fluorescent proteins. Molecular Membrane Biology, 2005, 22, 497-506.	2.0	13
29	Nanomolar ambient ATP decelerates P2X3 receptor kinetics. Neuropharmacology, 2008, 55, 1212-1218.	2.0	9
30	Nitric oxideâ€mediated signal transmission in bladder vasculature underlies the therapeutic actions of PDE5 inhibitors in the rat. British Journal of Pharmacology, 2021, 178, 1073-1094.	2.7	9
31	Anisotropic Panglial Coupling Reflects Tonotopic Organization in the Inferior Colliculus. Frontiers in Cellular Neuroscience, 2018, 12, 431.	1.8	7
32	BAC transgenic mice to study the expression of P2X2 and P2Y1 receptors. Purinergic Signalling, 2021, 17, 449-465.	1.1	4
33	Auxiliary Subunits Control Function and Subcellular Distribution of AMPA Receptor Complexes in NG2 Glia of the Developing Hippocampus. Frontiers in Cellular Neuroscience, 2021, 15, 669717.	1.8	3