Mark B Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/771757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CARM1 Methylates Chromatin Remodeling Factor BAF155 to Enhance Tumor Progression and Metastasis. Cancer Cell, 2014, 25, 21-36.	7.7	215
2	The Human Transient Receptor Potential Vanilloid Type 6 Distal Promoter Contains Multiple Vitamin D Receptor Binding Sites that Mediate Activation by 1,25-Dihydroxyvitamin D3 in Intestinal Cells. Molecular Endocrinology, 2006, 20, 1447-1461.	3.7	189
3	VDR/RXR and TCF4/β-Catenin Cistromes in Colonic Cells of Colorectal Tumor Origin: Impact on c-FOS and c-MYC Gene Expression. Molecular Endocrinology, 2012, 26, 37-51.	3.7	188
4	Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells. Journal of Biological Chemistry, 2016, 291, 17829-17847.	1.6	150
5	1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB Journal, 2015, 29, 4023-4035.	0.2	139
6	A Downstream Intergenic Cluster of Regulatory Enhancers Contributes to the Induction of CYP24A1 Expression by 11±,25-Dihydroxyvitamin D3. Journal of Biological Chemistry, 2010, 285, 15599-15610.	1.6	130
7	Multifunctional Enhancers Regulate Mouse and Human Vitamin D Receptor Gene Transcription. Molecular Endocrinology, 2010, 24, 128-147.	3.7	126
8	The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. Journal of Clinical Investigation, 2017, 127, 1146-1154.	3.9	125
9	The Osteoblast to Osteocyte Transition: Epigenetic Changes and Response to the Vitamin D ₃ Hormone. Molecular Endocrinology, 2014, 28, 1150-1165.	3.7	113
10	The RUNX2 Cistrome in Osteoblasts. Journal of Biological Chemistry, 2014, 289, 16016-16031.	1.6	112
11	Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 136-141.	1.2	107
12	Fundamentals of vitamin D hormone-regulated gene expression. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 5-11.	1.2	107
13	Regulation of target gene expression by the vitamin D receptor - an update on mechanisms. Reviews in Endocrine and Metabolic Disorders, 2012, 13, 45-55.	2.6	102
14	Genomic Determinants of Gene Regulation by 1,25-Dihydroxyvitamin D3 during Osteoblast-lineage Cell Differentiation. Journal of Biological Chemistry, 2014, 289, 19539-19554.	1.6	100
15	1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. Journal of Biological Chemistry, 2015, 290, 18199-18215.	1.6	87
16	The learning curve of robotic lobectomy. International Journal of Medical Robotics and Computer Assisted Surgery, 2012, 8, 448-452.	1.2	84
17	Characterizing Early Events Associated with the Activation of Target Genes by 1,25-Dihydroxyvitamin D3 in Mouse Kidney and Intestine in Vivo*. Journal of Biological Chemistry, 2007, 282, 22344-22352.	1.6	81
18	A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation. Journal of Biological Chemistry, 2017, 292, 17541-17558.	1.6	74

MARK B MEYER

#	Article	IF	CITATIONS
19	Genomic Determinants of Vitamin D-Regulated Gene Expression. Vitamins and Hormones, 2016, 100, 21-44.	0.7	67
20	Regulation of gene expression by 1,25-dihydroxyvitamin D3 in bone cells: exploiting new approaches and defining new mechanisms. BoneKEy Reports, 2014, 3, 482.	2.7	60
21	Molecular Actions of 1,25-Dihydroxyvitamin D3 on Genes Involved in Calcium Homeostasis. Journal of Bone and Mineral Research, 2007, 22, V16-V19.	3.1	59
22	Selective Distal Enhancer Control of the Mmp13 Gene Identified through Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Genomic Deletions. Journal of Biological Chemistry, 2015, 290, 11093-11107.	1.6	55
23	A Novel Distal Enhancer Mediates Inflammationâ€, PTHâ€, and Early Onset Murine Kidney Diseaseâ€Induced Expression of the Mouse <i>Fgf23</i> Gene. JBMR Plus, 2018, 2, 31-46.	1.3	52
24	Emerging regulatory paradigms for control of gene expression by 1,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 130-135.	1.2	49
25	Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105500.	1.2	47
26	Corepressors (NCoR and SMRT) as well as coactivators are recruited to positively regulated 1α,25-dihydroxyvitamin D3-responsive genes. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 120-124.	1.2	46
27	A Novel Distal Enhancer Mediates Cytokine Induction of Mouse Rankl Gene Expression. Molecular Endocrinology, 2009, 23, 2095-2110.	3.7	45
28	Mouse Rankl Expression Is Regulated in T Cells by c-Fos through a Cluster of Distal Regulatory Enhancers Designated the T Cell Control Region. Journal of Biological Chemistry, 2011, 286, 20880-20891.	1.6	42
29	βâ€Catenin Preserves the Stem State of Murine Bone Marrow Stromal Cells Through Activation of EZH2. Journal of Bone and Mineral Research, 2020, 35, 1149-1162.	3.1	42
30	Regulation of mouse Cyp24a1 expression via promoter-proximal and downstream-distal enhancers highlights new concepts of 1,25-dihydroxyvitamin D3 action. Archives of Biochemistry and Biophysics, 2012, 523, 2-8.	1.4	40
31	A chromatin-based mechanism controls differential regulation of the cytochrome P450 gene Cyp24a1 in renal and non-renal tissues. Journal of Biological Chemistry, 2019, 294, 14467-14481.	1.6	40
32	Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient Cyp27b1 pseudo-null mouse. Journal of Biological Chemistry, 2019, 294, 9518-9535.	1.6	40
33	1,25-Dihydroxyvitamin D3 and the aging-related Forkhead Box O and Sestrin proteins in osteoblasts. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 112-119.	1.2	35
34	The parathyroid hormone-regulated transcriptome in osteocytes: Parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function. Bone, 2015, 72, 81-91.	1.4	35
35	The mouse RANKL gene locus is defined by a broad pattern of histone H4 acetylation and regulated through distinct distal enhancers. Journal of Cellular Biochemistry, 2011, 112, 2030-2045.	1.2	33
36	Epigenetic histone modifications and master regulators as determinants of context dependent nuclear receptor activity in bone cells. Bone, 2015, 81, 757-764.	1.4	32

MARK B MEYER

#	Article	IF	CITATIONS
37	Mechanical Strain Downregulates C/EBPβ in MSC and Decreases Endoplasmic Reticulum Stress. PLoS ONE, 2012, 7, e51613.	1.1	29
38	Transcriptional Regulation of the Human <i>TNFSF11</i> Gene in T Cells via a Cell Type-Selective Set of Distal Enhancers. Journal of Cellular Biochemistry, 2015, 116, 320-330.	1.2	29
39	Mechanisms of Enhancer-mediated Hormonal Control of Vitamin D Receptor Gene Expression in Target Cells. Journal of Biological Chemistry, 2015, 290, 30573-30586.	1.6	26
40	Selective regulation of Mmp13 by 1,25(OH)2D3, PTH, and Osterix through distal enhancers. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 258-264.	1.2	26
41	The impact of VDR expression and regulation in vivo. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 36-45.	1.2	25
42	1,25-Dihydroxyvitamin D3 induced histone profiles guide discovery of VDR action sites. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 19-21.	1.2	24
43	The Enhanced Hypercalcemic Response to 20-Epi-1,25-Dihydroxyvitamin D3 Results from a Selective and Prolonged Induction of Intestinal Calcium-Regulating Genes. Endocrinology, 2009, 150, 3448-3456.	1.4	23
44	A Control Region Near the Fibroblast Growth Factor 23 Gene Mediates Response to Phosphate, 1,25(OH)2D3, and LPS In Vivo. Endocrinology, 2019, 160, 2877-2891.	1.4	20
45	The Phosphorylated Estrogen Receptor <i>α</i> (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Molecular and Cellular Biology, 2019, 39, .	1.1	20
46	Class 3 semaphorins are transcriptionally regulated by 1,25(OH) 2 D 3 in osteoblasts. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 185-193.	1.2	15
47	Genomic Mechanisms Governing Mineral Homeostasis and the Regulation and Maintenance of Vitamin D Metabolism. JBMR Plus, 2021, 5, e10433.	1.3	13
48	The Vitamin D Receptor. , 2011, , 97-135.		9
49	The unsettled science of nonrenal calcitriol production and its clinical relevance. Journal of Clinical Investigation, 2020, 130, 4519-4521.	3.9	8
50	Assessment of Mosaicism and Detection of Cryptic Alleles in CRISPR/Cas9-Engineered Neurofibromatosis Type 1 and TP53 Mutant Porcine Models Reveals Overlooked Challenges in Precision Modeling of Human Diseases. Frontiers in Genetics, 2021, 12, 721045.	1.1	5
51	Profiling Histone Modifications by Chromatin Immunoprecipitation Coupled to Deep Sequencing in Skeletal Cells. Methods in Molecular Biology, 2015, 1226, 61-70.	0.4	5
52	Deletion of Mediator 1 suppresses TGFÎ ² signaling leading to changes in epidermal lineages and regeneration. PLoS ONE, 2020, 15, e0238076.	1.1	4
53	Deletion of a putative promoter-proximal Tnfsf11 regulatory region in mice does not alter bone mass or Tnfsf11 expression in vivo. PLoS ONE, 2021, 16, e0250974.	1.1	4
54	New Approaches to Assess Mechanisms of Action of Selective Vitamin D Analogues. International Journal of Molecular Sciences, 2021, 22, 12352.	1.8	4

MARK B MEYER

#	Article	IF	CITATIONS
55	Genome-Wide Perspectives on Vitamin D Receptor–Mediated Control of Gene Expression in Target Cells. , 2018, , 141-174.		2
56	1,25-Dihydroxyvitamin D3. , 2012, , 1681-1709.		1
57	Mesenchymal Differentiation, Epigenetic Dynamics, and Interactions With VDR. , 2018, , 227-243.		0
58	Title is missing!. , 2020, 15, e0238076.		0
59	Title is missing!. , 2020, 15, e0238076.		Ο
60	Title is missing!. , 2020, 15, e0238076.		0
61	Title is missing!. , 2020, 15, e0238076.		0