Yann Sarazin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Transactions, 2010, 39, 8363.	3.3	449
2	Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides. Chemical Reviews, 2015, 115, 3564-3614.	47.7	244
3	Beyond Stereoselectivity, Switchable Catalysis: Some of the Last Frontier Challenges in Ringâ€Opening Polymerization of Cyclic Esters. Chemistry - A European Journal, 2015, 21, 7988-8003.	3.3	218
4	Versatile catalytic systems based on complexes of zinc, magnesium and calcium supported by a bulky bis(morpholinomethyl)phenoxy ligand for the large-scale immortal ring-opening polymerisation of cyclic esters. Dalton Transactions, 2009, , 9820.	3.3	208
5	Discrete, Solvent-Free Alkaline-Earth Metal Cations: Metal···Fluorine Interactions and ROP Catalytic Activity. Journal of the American Chemical Society, 2011, 133, 9069-9087.	13.7	202
6	Titanium, zinc and alkaline-earth metal complexes supported by bulky O,N,N,O-multidentate ligands: syntheses, characterisation and activity in cyclic esterpolymerisation. Dalton Transactions, 2006, , 340-350.	3.3	190
7	When Bigger Is Better: Intermolecular Hydrofunctionalizations of Activated Alkenes Catalyzed by Heteroleptic Alkaline Earth Complexes. Angewandte Chemie - International Edition, 2012, 51, 4943-4946.	13.8	157
8	Novel Zinc and Magnesium Alkyl and Amido Cations for Ring-Opening Polymerization Reactions. Organometallics, 2004, 23, 3296-3302.	2.3	123
9	Zinc and magnesium complexes supported by bulky multidentate amino-ether phenolate ligands: potent pre-catalysts for the immortalring-opening polymerisation of cyclic esters. Dalton Transactions, 2011, 40, 523-534.	3.3	111
10	Heteroleptic Alkyl and Amide Iminoanilide Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo)Hydroamination Reactions. Chemistry - A European Journal, 2013, 19, 13445-13462.	3.3	109
11	Bis(dimethylsilyl)amide Complexes of the Alkaline-Earth Metals Stabilized by β-Siâ^'H Agostic Interactions: Synthesis, Characterization, and Catalytic Activity. Organometallics, 2010, 29, 6569-6577.	2.3	108
12	Discrete, Base-Free, Cationic Alkaline-Earth Complexes - Access and Catalytic Activity in the Polymerization of Lactide. European Journal of Inorganic Chemistry, 2010, 2010, 3423-3428.	2.0	98
13	Chiral (1,2)â€Diphenylethyleneâ€Salen Complexes of Triel Metals: Coordination Patterns and Mechanistic Considerations in the Isoselective ROP of Lactide. Chemistry - A European Journal, 2014, 20, 6131-6147.	3.3	89
14	Heteroleptic Silylamido Phenolate Complexes of Calcium and the Larger Alkaline Earth Metals: βâ€Agostic Aeâ‹â‹SiH Stabilization and Activity in the Ringâ€Opening Polymerization of <scp>L</scp> ‣actide. C - A European Journal, 2012, 18, 6289-6301.	Chemistry	81
15	Synthetic and Mechanistic Aspects of the Immortal Ringâ€Opening Polymerization of Lactide and Trimethylene Carbonate with New Homo―and Heteroleptic Tin(II)â€Phenolate Catalysts. Chemistry - A European Journal, 2012, 18, 2998-3013.	3.3	74
16	Calcium, Strontium and Barium Homogeneous Catalysts for Fine Chemicals Synthesis. Chemical Record, 2016, 16, 2482-2505.	5.8	71
17	Discrete Divalent Rareâ€Earth Cationic ROP Catalysts: Ligandâ€Dependent Redox Behavior and Discrepancies with Alkalineâ€Earth Analogues in a Ligandâ€Assisted Activated Monomer Mechanism. Chemistry - A European Journal, 2013, 19, 3986-3994.	3.3	69
18	Alkali aminoether-phenolate complexes: synthesis, structural characterization and evidence for an activated monomer ROP mechanism. Dalton Transactions, 2013, 42, 9361.	3.3	68

#	Article	IF	CITATIONS
19	Aluminum, Indium, and Mixed Yttrium–Lithium Complexes Supported by a Chiral Binap-Based Fluorinated Dialkoxide: Structural Features and Heteroselective ROP of Lactide. Organometallics, 2014, 33, 5740-5748.	2.3	65
20	Bariumâ€Mediated Crossâ€Dehydrocoupling of Hydrosilanes with Amines: A Theoretical and Experimental Approach. Angewandte Chemie - International Edition, 2015, 54, 7679-7683.	13.8	65
21	Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective <i>ortho</i> -C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes. ACS Catalysis, 2020, 10, 10794-10802.	11.2	63
22	Divalent Heteroleptic Ytterbium Complexes – Effective Catalysts for Intermolecular Styrene Hydrophosphination and Hydroamination. Inorganic Chemistry, 2014, 53, 1654-1661.	4.0	62
23	Cyclohydroamination of Aminoalkenes Catalyzed by Disilazide Alkalineâ€Earth Metal Complexes: Reactivity Patterns and Deactivation Pathways. Chemistry - A European Journal, 2013, 19, 2784-2802.	3.3	61
24	Thallium(I) Sandwich, Multidecker, and Ether Complexes Stabilized by Weakly-Coordinating Anions:Â A Spectroscopic, Structural, and Theoretical Investigation. Journal of the American Chemical Society, 2007, 129, 881-894.	13.7	60
25	Heteroleptic Tin(II) Initiators for the Ringâ€Opening (Co)Polymerization of Lactide and Trimethylene Carbonate: Mechanistic Insights from Experiments and Computations. Chemistry - A European Journal, 2013, 19, 13463-13478.	3.3	56
26	Diamido-Ether Actinide Complexes as Initiators for Lactide Ring-Opening Polymerization. Organometallics, 2013, 32, 1183-1192.	2.3	53
27	Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis. Dalton Transactions, 2014, 43, 4268-4286.	3.3	49
28	Alkalineâ€Earthâ€Catalysed Crossâ€Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism. Chemistry - A European Journal, 2016, 22, 4564-4583.	3.3	49
29	Alkaliâ€Metalâ€Catalyzed Crossâ€Dehydrogenative Couplings of Hydrosilanes with Amines. ChemCatChem, 2016, 8, 1373-1378.	3.7	48
30	Highly Effective Alkaline Earth Catalysts for the Sterically Governed Hydrophosphonylation of Aldehydes and Nonactivated Ketones. Chemistry - A European Journal, 2012, 18, 13259-13264.	3.3	46
31	Synthesis of Bridged Tetrahydrobenzo[<i>b</i>]azepines and Derivatives through an Azaâ€Piancatelli Cyclization/Michael Addition Sequence. Angewandte Chemie - International Edition, 2020, 59, 1134-1138.	13.8	45
32	Kinetic Analysis of the Immortal Ring-Opening Polymerization of Cyclic Esters: A Case Study with Tin(II) Catalysts. Macromolecules, 2014, 47, 2574-2584.	4.8	44
33	Potassium and Well-Defined Neutral and Cationic Calcium Fluoroalkoxide Complexes: Structural Features and Reactivity. Organometallics, 2014, 33, 5630-5642.	2.3	43
34	Tailored Cyclic and Linear Polycarbosilazanes by Barium atalyzed Nâ^'H/Hâ^'Si Dehydrocoupling Reactions. Angewandte Chemie - International Edition, 2016, 55, 3744-3748.	13.8	43
35	Chromium allyl and alkyl catalysts for the vinyl polymerization of norbornene and ethylene–norbornene copolymerizations. Journal of Molecular Catalysis A, 2005, 235, 88-97.	4.8	42
36	On the Initiation Mechanism of Syndiospecific Styrene Polymerization Catalyzed by Singleâ€Component <i>ansa</i> ‣anthanidocenes. Chemistry - A European Journal, 2009, 15, 3773-3783.	3.3	42

#	Article	IF	CITATIONS
37	Structure vs ¹¹⁹ Sn NMR Chemical Shift in Three-Coordinated Tin(II) Complexes: Experimental Data and Predictive DFT Computations. Organometallics, 2015, 34, 2139-2150.	2.3	42
38	Heterogenized "Ligand-Free―Lanthanide Catalysts for the Homo- and Copolymerization of Ethylene and 1,3-Butadiene. Macromolecules, 2005, 38, 3060-3067.	4.8	40
39	Isoselective Styrene Polymerization Catalyzed by <i>ansa</i> Bis(indenyl) Allyl Rare Earth Complexes. Stereochemical and Mechanistic Aspects. Macromolecules, 2011, 44, 3312-3322.	4.8	40
40	Highly Active, Chemo―and Regioselective Yb ^{II} and Sm ^{II} Catalysts for the Hydrophosphination of Styrene with Phenylphosphine. Chemistry - A European Journal, 2015, 21, 6033-6036.	3.3	40
41	Highly Fluorinated Tris(indazolyl)borate Silylamido Complexes of the Heavier Alkaline Earth Metals: Synthesis, Characterization, and Efficient Catalytic Intramolecular Hydroamination. Chemistry - A European Journal, 2015, 21, 4115-4125.	3.3	37
42	Alkaline Earth–Olefin Complexes with Secondary Interactions. Chemistry - A European Journal, 2016, 22, 6505-6509.	3.3	36
43	Amino Ether–Phenolato Precatalysts of Divalent Rare Earths and Alkaline Earths for the Single and Double Hydrophosphination of Activated Alkenes. Organometallics, 2016, 35, 3261-3271.	2.3	36
44	Mono(arene) Complexes of Thallium(I) Supported by a Weakly Coordinating Anion. Organometallics, 2007, 26, 1811-1815.	2.3	34
45	Well-defined, solvent-free cationic barium complexes: Synthetic strategies and catalytic activity in the ring-opening polymerization of lactide. Inorganica Chimica Acta, 2012, 380, 2-13.	2.4	34
46	Sequential Barium atalysed Nâ^'H/Hâ^'Si Dehydrogenative Cross ouplings: Cyclodisilazanes versus Linear Oligosilazanes. Chemistry - A European Journal, 2016, 22, 15733-15743.	3.3	32
47	βâ€Diketiminato–Alkaline Earth Cationic Complexes: Synthesis, Structures, Lactide Polymerization and Unusual Oxidative Reactivity of the Ancillary Ligand. European Journal of Inorganic Chemistry, 2012, 2012, 3023-3031.	2.0	31
48	Synthesis and structures of new binuclear zinc alkyl, aryl and aryloxo complexes. Journal of Organometallic Chemistry, 2008, 693, 1494-1501.	1.8	30
49	Alkaline-Earth Metal Complexes in Homogeneous Polymerization Catalysis. Topics in Organometallic Chemistry, 2013, , 141-189.	0.7	30
50	On the coordination chemistry of organochalcogenolates R ^{NMe2} ^E ^{â^'} and R ^{NMe2} ^E^O ^{â''} (E = S, Se) onto lead(<scp>ii</scp>) and lighter divalent tetrel elements. Dalton Transactions, 2014, 43, 16459-16474.	3.3	30
51	Aluminum, calcium and zinc complexes supported by potentially tridentate iminophenolate ligands: synthesis and use in the ringâ€opening polymerization of lactide. Applied Organometallic Chemistry, 2012, 26, 681-688.	3.5	27
52	Low oordinate Barium Boryloxides: Synthesis and Dehydrocoupling Catalysis for the Production of Borasiloxanes. Angewandte Chemie - International Edition, 2018, 57, 11747-11751.	13.8	27
53	Ï€ Ligands in Alkaline Earth Complexes. Organometallics, 2017, 36, 1269-1277.	2.3	25
54	Cationic BrÃุnsted Acids for the Preparation of SnIV Salts: Synthesis and Characterisation of [Ph3Sn(OEt2)][H2N{B(C6F5)3}2],[Sn(NMe2)3(HNMe2)2][B(C6F5)4] and [Me3Sn(HNMe2)2][B(C6F5)4]. European Journal of Inorganic Chemistry, 2006, 2006, 3211-3220.	2.0	22

#	Article	IF	CITATIONS
55	Mixed-ligand iminopyrrolato-salicylaldiminato group 4 metal complexes: Optimising catalyst structure for ethylene/propylene copolymerisations. Journal of Organometallic Chemistry, 2007, 692, 4603-4611.	1.8	21
56	Oneâ€Pot Synthesis of Lactide–Styrene Diblock Copolymers via Catalytic Immortal Ringâ€Opening Polymerization of Lactide and Nitroxideâ€Mediated Polymerization of Styrene. ChemSusChem, 2010, 3, 579-590.	6.8	21
57	Kinetic Analysis of the Living Ringâ€Opening Polymerisation of <scp>L</scp> ‣actide with Tin(II) Initiators. European Journal of Inorganic Chemistry, 2013, 2013, 5896-5905.	2.0	21
58	Modular Synthesis of 9,10-Dihydroacridines through an <i>ortho</i> -C Alkenylation/Hydroarylation Sequence between Anilines and Aryl Alkynes in Hexafluoroisopropanol. Organic Letters, 2021, 23, 2565-2570.	4.6	21
59	Structurally Characterized Lead(II) Alkoxides as Potent Ring-Opening Polymerization Catalysts. Organometallics, 2015, 34, 1321-1327.	2.3	19
60	Calcium complexes with imino-phosphinanilido chalcogenide ligands for heterofunctionalisation catalysis. RSC Advances, 2016, 6, 57835-57843.	3.6	19
61	Bis(imino)carbazolate: A Master Key for Barium Chemistry. Angewandte Chemie - International Edition, 2020, 59, 9120-9126.	13.8	17
62	Copolymerization of Propene and 5-Vinyl-2-Norbornene: A Simple Route to Polar Poly(propylene)s. Macromolecular Rapid Communications, 2005, 26, 1208-1213.	3.9	16
63	Allyl strontium compounds: synthesis, molecular structure and properties. Dalton Transactions, 2012, 41, 9176.	3.3	16
64	Stable lead(<scp>ii</scp>) boroxides. Chemical Communications, 2018, 54, 5299-5302.	4.1	16
65	Barium Siloxides and Catalysed Formation of Siâ^'Oâ^'Si' Motifs. Chemistry - A European Journal, 2019, 25, 13509-13513.	3.3	16
66	Barium complexes with crown-ether-functionalised amidinate and iminoanilide ligands for the hydrophosphination of vinylarenes. Dalton Transactions, 2019, 48, 9173-9180.	3.3	16
67	Metalâ<â<â <fâ^'c -="" a="" alkaline="" bonding="" chemistry="" earth="" european="" fluoroarylamides.="" in="" jou<br="" low="" oordinate="">2019, 25, 8854-8864.</fâ^'c>	rnal, 3.3	16
68	Discrete allyl complexes of group 3 metals and lanthanides. Comptes Rendus Chimie, 2010, 13, 608-625.	0.5	15
69	Wellâ€defined Syndiotactic Polystyreneâ€ <i>b</i> â€Atactic Polystyrene Stereoblock Polymers. Macromolecular Rapid Communications, 2011, 32, 751-757.	3.9	15
70	A versatile nitrogen ligand for alkaline-earth chemistry. Dalton Transactions, 2020, 49, 11878-11889.	3.3	15
71	Synthesis and crystal structure of [C6H5Hg(H2NSiMe3)][H2N{B(C6F5)3}2], a phenyl–mercury(II) cation stabilised by a non-coordinating counter-anion. Journal of Organometallic Chemistry, 2006, 691, 5680-5687.	1.8	14
72	Syndio―and Isoselective Coordinative Chain Transfer Polymerization of Styrene Promoted by <i>ansa</i> ‣anthanidocene/ Dialkylmagnesium Systems. Advanced Synthesis and Catalysis, 2011, 353, 1367-1374.	4.3	13

#	Article	IF	CITATIONS
73	Tailored Cyclic and Linear Polycarbosilazanes by Barium atalyzed Nâ^'H/Hâ^'Si Dehydrocoupling Reactions. Angewandte Chemie, 2016, 128, 3808-3812.	2.0	12
74	Low oordinate Barium Boryloxides: Synthesis and Dehydrocoupling Catalysis for the Production of Borasiloxanes. Angewandte Chemie, 2018, 130, 11921-11925.	2.0	12
75	Contemporary Molecular Barium Chemistry. European Journal of Inorganic Chemistry, 2020, 2020, 3321-3346.	2.0	11
76	Binary cerium(IV) tert-butoxides-dialkylmagnesium systems: Radical versus coordinative polymerization of styrene. Journal of Molecular Catalysis A, 2005, 238, 207-214.	4.8	10
77	Cadmium complexes bearing ^{Me2} N^E^O ^{â^'} (E = S, Se) organochalcogenoalkoxides and their zinc and mercury analogues. Dalton Transactions, 2017, 46, 3179-3191.	3.3	10
78	Tethered cationic alkaline earth – olefin complexes. Dalton Transactions, 2017, 46, 14785-14794.	3.3	10
79	Synthesis and structure of [Cp2Zr(OPri)(HOPri)]+ and its activity in the polymerisation of propene oxide. Journal of Organometallic Chemistry, 2004, 689, 4624-4629.	1.8	9
80	Aluminium, gallium and indium complexes supported by a chiral phenolato-prolinolato dianionic ligand. Main Group Metal Chemistry, 2016, 39, .	1.6	9
81	C sp 3H Bond Activation with Triel Metals: Indium and Gallium Zwitterions through Internal Hydride Abstraction in Rigid Salan Ligands. Chemistry - A European Journal, 2014, 20, 7706-7717.	3.3	8
82	Barium atalysed Dehydrocoupling of Hydrosilanes and Borinic Acids: A Mechanistic Insight. Chemistry - A European Journal, 2020, 26, 3535-3544.	3.3	8
83	Bonding in Barium Boryloxides, Siloxides, Phenoxides and Silazides: A Comparison with the Lighter Alkaline Earths. Chemistry - A European Journal, 2021, 27, 11966-11982.	3.3	8
84	K+··ĈĨ€ and K+···F Non-Covalent Interactions in Ï€-Functionalized Potassium Fluoroalkoxides. Inorganics, 2017, 5, 13.	2.7	7
85	Heterobimetallic Ba/Li and Ca/Li amides and diphenylmethanide. Dalton Transactions, 2019, 48, 5500-5504.	3.3	6
86	Secondary interactions – Cement in trinuclear calcium complexes. Inorganica Chimica Acta, 2018, 475, 59-64.	2.4	5
87	Aminofluoroalkoxide amido and boryloxo lead(<scp>ii</scp>) complexes. Dalton Transactions, 2019, 48, 9944-9948.	3.3	5
88	Water-tolerant catalyst systems for the bulk cationic polymerization of para-methylstyrene and indene. European Polymer Journal, 2010, 46, 1093-1099.	5.4	4
89	Metal–metal bonded alkaline-earth distannyls. Chemical Science, 2021, 12, 7098-7114.	7.4	4
90	Heteroleptic lead(II)-halide complexes supported by a bulky iminoanilide ligand. Main Group Metal Chemistry, 2017, 40, .	1.6	3

#	Article	IF	CITATIONS
91	Alkaline-earth complexes with macrocyclic-functionalised bis(phenolate)s and bis(fluoroalkoxide)s. Dalton Transactions, 2020, 49, 13017-13028.	3.3	3
92	Bis(imino)carbazolate: A Master Key for Barium Chemistry. Angewandte Chemie, 2020, 132, 9205-9211.	2.0	3
93	Calcium, Strontium and Barium Complexes in Organic Synthesis. , 2022, , 104-192.		2
94	Heteroleptic carbazolato-barium hydroborates and a related separated ion pair. Polyhedron, 2022, 217, 115731.	2.2	2
95	Lead(II) Siloxides. Chemistry - A European Journal, 2019, 25, 16236-16240.	3.3	1
96	Barium atalysed Dehydrocoupling of Hydrosilanes and Borinic Acids: A Mechanistic Insight. Chemistry - A European Journal, 2020, 26, 3445-3445.	3.3	1
97	Bis(imino)carbazolate lead(ii) fluoride and related halides. Dalton Transactions, 2021, 50, 9021-9025.	3.3	1
98	Bonding analysis in ytterbium(ii) distannyl and related tetryls. Dalton Transactions, 2021, 50, 14273-14284.	3.3	1