Wei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717539/publications.pdf Version: 2024-02-01

\//гі 7н1

#	Article	IF	CITATIONS
1	Distributed convex optimization via proportional-integral-differential algorithm. Measurement and Control, 2022, 55, 13-20.	0.9	4
2	Event-Triggered Formation Control of Multiagent Systems With Linear Continuous-Time Dynamic Models. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 6235-6245.	5.9	11
3	Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay. Mathematics, 2022, 10, 279.	1.1	7
4	Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies. Mathematics and Computers in Simulation, 2022, 200, 489-503.	2.4	5
5	Event-triggered impulsive chaotic synchronization of fractional-order differential systems. Applied Mathematics and Computation, 2021, 388, 125554.	1.4	17
6	Optimal meanâ€square consensus for heterogeneous multiâ€agent system with probabilistic time delay. IET Control Theory and Applications, 2021, 15, 1043-1053.	1.2	2
7	pth input-to-state stability of stochastic bidirectional associative memory neural networks with infinite delays. , 2021, , .		0
8	Fixed-time formation tracking for multiple nonholonomic wheeled mobile robots based on distributed observer. Nonlinear Dynamics, 2021, 106, 3331-3349.	2.7	15
9	Generalized SEIR Epidemic Model for COVID-19 in a Multipatch Environment. Discrete Dynamics in Nature and Society, 2021, 2021, 1-12.	0.5	6
10	Asynchronous consensus of linear multi-agent systems with impulses effect. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 105044.	1.7	11
11	Fixed-Time Connectivity Preserving Tracking Consensus of Multiagent Systems with Disturbances. Complexity, 2020, 2020, 1-8.	0.9	0
12	Event-Triggered Average Consensus of Multiagent Systems with Switching Topologies. Discrete Dynamics in Nature and Society, 2020, 2020, 1-7.	0.5	1
13	Finite-time Consensus of Leader-following Multi-agent Systems with Multiple Time Delays over Time-varying Topology. International Journal of Control, Automation and Systems, 2020, 18, 1985-1992.	1.6	14
14	Event-triggered Formation Control of Multi-agent Systems with Time Delay via Complex-valued Laplacian. , 2019, , .		2
15	Leader-following consensus of multi-agent systems via event-based impulsive control. Measurement and Control, 2019, 52, 91-99.	0.9	13
16	Exponential input-to-state stability of impulsive stochastic fuzzy Cohen-Grossberg neural networks with distributed infinite transmission delays. , 2019, , .		3
17	Leader-Following Consensus of Multi-Agent Systems via Adaptive Event-Based Control. Journal of Systems Science and Complexity, 2019, 32, 846-856.	1.6	26
18	Flocking in nonlinear multi-agent systems with time-varying delay via event-triggered control. Applied Mathematics and Computation, 2019, 350, 66-77.	1.4	35

Wei Zhu

#	Article	IF	CITATIONS
19	Adaptive Event-Based Consensus of Multi-Agent Systems with General Linear Dynamics. Journal of Systems Science and Complexity, 2018, 31, 120-129.	1.6	16
20	Event-Based Impulsive Control of Continuous-Time Dynamic Systems and Its Application to Synchronization of Memristive Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 3599-3609.	7.2	108
21	Fully distributed consensus of second-order multi-agent systems using adaptive event-based control. Science China Information Sciences, 2018, 61, 1.	2.7	15
22	Consensus of linear multi-agent systems via adaptive event-based protocols. Neurocomputing, 2018, 318, 175-181.	3.5	31
23	Consensus of First-order Multi-agent Systems via Adaptive Event-Based Impulsive Control. , 2018, , .		0
24	Consensus of Fractional-Order Multi-Agent Systems with Input Time Delay. Fractional Calculus and Applied Analysis, 2017, 20, 52-70.	1.2	62
25	Event-based consensus of second-order multi-agent systems with discrete time. Automatica, 2017, 79, 78-83.	3.0	74
26	Consensus of fractional-order multi-agent systems with linear models via observer-type protocol. Neurocomputing, 2017, 230, 60-65.	3.5	69
27	Consensus of multiâ€agent systems with timeâ€varying topology: An eventâ€based dynamic feedback scheme. International Journal of Robust and Nonlinear Control, 2017, 27, 1339-1350.	2.1	28
28	Consensus of discreteâ€time linear multiâ€agent systems with eventâ€based dynamic feedback scheme. IET Control Theory and Applications, 2017, 11, 2567-2572.	1.2	3
29	Consensus Analysis of Fractional-Order Multiagent Systems with Double-Integrator. Discrete Dynamics in Nature and Society, 2017, 2017, 1-8.	0.5	5
30	Consensus of Fractional-Order Multiagent Systems with Double Integrator under Switching Topologies. Discrete Dynamics in Nature and Society, 2017, 2017, 1-7.	0.5	6
31	Finite-time consensus problem of multi-agent systems with disturbance. Journal of the Franklin Institute, 2016, 353, 2576-2587.	1.9	18
32	Consensus analysis of first-order discrete-time multi-agent systems with time delay: An event-based approach. , 2016, , .		7
33	Event-based consensus of first-order discrete time multi-agent systems. , 2016, , .		10
34	Event-triggered consensus in nonlinear multi-agent systems with nonlinear dynamics and directed network topology. Neurocomputing, 2016, 185, 105-112.	3.5	37
35	Event-Triggering Sampling Based Leader-Following Consensus in Second-Order Multi-Agent Systems. IEEE Transactions on Automatic Control, 2015, 60, 1998-2003.	3.6	525
36	Event-Based Leader-following Consensus of Multi-Agent Systems with Input Time Delay. IEEE Transactions on Automatic Control, 2015, 60, 1362-1367.	3.6	399

Wei Zhu

#	Article	IF	CITATIONS
37	Event-based leader-following consensus of multi-agent systems with switching topologies. , 2015, , .		2
38	Leader-following consensus of fractional-order multi-agent systems with general linear models. , 2014, , .		4
39	Event-based consensus of multi-agent systems with general linear models. Automatica, 2014, 50, 552-558.	3.0	559
40	Finite-time consensus for leader-following multi-agent systems over switching network topologies. Chinese Physics B, 2013, 22, 110204.	0.7	12
41	Consensus of Multiagent Systems With Switching Jointly Reachable Interconnection and Time Delays. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2012, 42, 348-358.	3.4	34
42	Leader-following consensus of second-order agents with multiple time-varying delays. Automatica, 2010, 46, 1994-1999.	3.0	363
43	Invariant and attracting sets of impulsive delay difference equations with continuous variables. Computers and Mathematics With Applications, 2008, 55, 2732-2739.	1.4	15
44	Global impulsive exponential synchronization of time-delayed coupled chaotic systems. Chaos, Solitons and Fractals, 2008, 35, 904-912.	2.5	42
45	Global exponential stability of impulsive delay difference equation. Applied Mathematics and Computation, 2006, 181, 65-72.	1.4	44
46	Mean-square tracking consensus of heterogeneous multi-agent systems with additive noise and time delay. International Journal of Control, 0, , 1-12.	1.2	0
47	Fixed-time consensus of heterogeneous multi-agent systems based on distributed observer. International Journal of Systems Science, $\Omega = 1-10$	3.7	7