Dibyajyoti Haldar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717366/publications.pdf

Version: 2024-02-01

471371 642610 1,210 36 17 23 citations h-index g-index papers 36 36 36 840 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 2021, 264, 128523.	4.2	174
2	MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 2020, 251, 126388.	4.2	116
3	Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydrate Polymers, 2020, 250, 116937.	5.1	109
4	Lignocellulosic conversion into value-added products: A review. Process Biochemistry, 2020, 89, 110-133.	1.8	91
5	A review on global perspectives of sustainable development in bioenergy generation. Bioresource Technology, 2022, 348, 126791.	4.8	91
6	Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environmental Chemical Engineering, 2021, 9, 106179.	3.3	73
7	Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agro-industrial waste residues: A review. International Journal of Biological Macromolecules, 2020, 163, 1828-1843.	3. 6	71
8	A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydrate Polymers, 2021, 273, 118537.	5.1	64
9	Consolidated bioprocessing of lignocellulosic biomass: Technological advances and challenges. Bioresource Technology, 2022, 354, 127153.	4.8	58
10	A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. International Journal of Green Energy, 2016, 13, 1232-1253.	2.1	54
11	Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects. Journal of Environmental Chemical Engineering, 2021, 9, 106394.	3.3	53
12	Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 2022, 344, 126343.	4.8	42
13	Development of Spectrophotometric Method for the Analysis of Multi-component Carbohydrate Mixture of Different Moieties. Applied Biochemistry and Biotechnology, 2017, 181, 1416-1434.	1.4	35
14	Understanding the management of household food waste and its engineering for sustainable valorization- A state-of-the-art review. Bioresource Technology, 2022, 358, 127390.	4.8	26
15	Enumeration of monosugars' inhibition characteristics on the kinetics of enzymatic hydrolysis of cellulose. Process Biochemistry, 2018, 72, 130-136.	1.8	24
16	Thermochemical pretreatment enhanced bioconversion of elephant grass (Pennisetum purpureum): insight on the production of sugars and lignin. Biomass Conversion and Biorefinery, 2022, 12, 1125-1138.	2.9	22
17	A Critical Review on the Effect of Lignin Redeposition on Biomass in Controlling the Process of Enzymatic Hydrolysis. Bioenergy Research, 2022, 15, 863-874.	2.2	21
18	Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. Chemosphere, 2022, 300, 134480.	4.2	20

#	Article	IF	CITATIONS
19	Enzymatic hydrolysis of banana stems (<i>Musa acuminata</i>): Optimization of process parameters and inhibition characterization. International Journal of Green Energy, 2018, 15, 406-413.	2.1	18
20	Assessment of water quality of Damodar River in South Bengal region of India by Canadian Council of Ministers of Environment (CCME) Water Quality Index: a case study. Desalination and Water Treatment, 2016, 57, 3489-3502.	1.0	17
21	Sugarcane bagasse into value-added products: a review. Environmental Science and Pollution Research, 2022, 29, 62785-62806.	2.7	17
22	A sustainable approach to enhance fruit shelfâ€life: Edible coating from pineapple fruit waste biomass. Journal of Applied Polymer Science, 2021, 138, 50388.	1.3	5
23	Hierarchical model screening on enzymatic hydrolysis of microcrystalline cellulose. Biomass Conversion and Biorefinery, 2024, 14, 8503-8512.	2.9	3
24	Formation and detoxification of inhibitors. , 2021, , 61-78.		2
25	Value-added products derived from lignocellulosic biomass. , 2021, , 125-140.		2
26	Analytical methods for the quantification of sugars and characterization of biomass., 2021,, 111-124.		1
27	Progress in the synthesis and applications of polymeric nanomaterials derived from waste lignocellulosic biomass., 2022,, 419-433.		1
28	Enzymatic hydrolysis of lignocellulosic biomass: Mechanistic insight and advancement., 2021,, 79-94.		0
29	Conventional pretreatment methods of lignocellulosic biomass. , 2021, , 31-46.		0
30	Compositional aspects of lignocellulosic biomass. , 2021, , 17-30.		0
31	Introduction to lignocellulosic biomass and its potential. , 2021, , 1-15.		0
32	Strategies to improve enzymatic production of sugars. , 2021, , 95-109.		0
33	Bioenergy from biomass. , 2021, , 153-166.		O
34	Cover Image, Volume 138, Issue 15. Journal of Applied Polymer Science, 2021, 138, 50497.	1.3	0
35	Emerging and advanced techniques in the pretreatment of lignocellulosic biomass., 2021,, 47-60.		0
36	Potential of MOF-based novel adsorbents for the removal of aquatic pollutants., 2022,, 29-47.		0