Ipsita Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717281/publications.pdf

Version: 2024-02-01

57
g-index
4550
4550
ting authors

#	Article	IF	CITATIONS
1	Glycerol 3-phosphate dehydrogenase regulates heat shock response in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119238.	1.9	1
2	Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opinion on Drug Discovery, 2021, 16, 255-274.	2.5	18
3	Drugs, host proteins and viral proteins: how their promiscuities shape antiviral design. Biological Reviews, 2021, 96, 205-222.	4.7	7
4	Applications of three phase partitioning and macro-(affinity ligand) facilitated three phase partitioning in protein refolding., 2021,, 197-222.		0
5	Macro-(affinity ligand) facilitated three phase partitioningConverting TPP into an affinity based process., 2021,, 175-196.		2
6	Molecular crowding accelerates aggregation of \hat{l}_{\pm} -synuclein by altering its folding pathway. European Biophysics Journal, 2021, 50, 59-67.	1.2	6
7	Lysine245 plays a crucial role in stability and function of glycerol 3â€phosphate dehydrogenase (Gpd1) in <i>Saccharomyces cerevisiae</i> . Journal of Cellular Biochemistry, 2021, 122, 1726-1736.	1.2	3
8	Saccharomyces cerevisiae Fpr1 functions as a chaperone to inhibit protein aggregation. International Journal of Biological Macromolecules, 2021, 191, 40-50.	3.6	5
9	Analytical and biosensing platforms for insulin: A review. Sensors and Actuators Reports, 2021, 3, 100028.	2.3	21
10	Oligomers, fibrils and aggregates formed by alpha-synuclein: role of solution conditions. Journal of Biomolecular Structure and Dynamics, 2020, , 1-10.	2.0	2
11	Harmine Acts as an Indirect Inhibitor of Intracellular Protein Aggregation. ACS Omega, 2020, 5, 5620-5628.	1.6	8
12	How Corona Formation Impacts Nanomaterials as Drug Carriers. Molecular Pharmaceutics, 2020, 17, 725-737.	2.3	36
13	Stabilization of elongated polyglutamine tracts by a helical peptide derived from N â€ŧerminal huntingtin. IUBMB Life, 2020, 72, 1528-1536.	1.5	2
14	Discovery of Arginine Ethyl Ester as Polyglutamine Aggregation Inhibitor: Conformational Transitioning of Huntingtin N-Terminus Augments Aggregation Suppression. ACS Chemical Neuroscience, 2019, 10, 3969-3985.	1.7	14
15	Nucleic Acid Therapeutics in Huntington's Disease. Recent Patents on Biotechnology, 2019, 13, 187-206.	0.4	5
16	Does Nâ€terminal huntingtin function as a â€^holdase' for inhibiting cellular protein aggregation?. FEBS Journal, 2018, 285, 1791-1811.	2.2	6
17	Designing aptamers which respond to intracellular oxidative stress and inhibit aggregation of mutant huntingtin. Free Radical Biology and Medicine, 2018, 120, 311-316.	1.3	8
18	RNA Aptamers Rescue Mitochondrial Dysfunction in a Yeast Model of Huntington's Disease. Molecular Therapy - Nucleic Acids, 2018, 12, 45-56.	2.3	12

#	Article	IF	Citations
19	Discrete roles of trehalose and Hsp104 in inhibition of protein aggregation in yeast cells. FEMS Yeast Research, 2018, 18 , .	1.1	6
20	Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington's Disease. , 2018, , 207-228.		0
21	Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer?. International Journal of Biological Macromolecules, 2017, 100, 75-88.	3.6	7
22	Nicotine slows down oligomerisation of α-synuclein and ameliorates cytotoxicity in a yeast model of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1454-1463.	1.8	32
23	Crosstalk Between Osmolytes and Cellular Chaperones: Examples in Saccharomyces cerevisiae. , 2017, , 55-75.		1
24	Protein aggregation. International Journal of Biological Macromolecules, 2017, 100, 1-2.	3.6	1
25	Obtaining a high activity subtilisin preparation by controlled thermal stress in n-octane. Analytical Biochemistry, 2017, 534, 86-90.	1.1	1
26	Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media. Methods in Molecular Biology, 2017, 1504, 109-123.	0.4	12
27	Converting Enzymes into Tools of Industrial Importance. Recent Patents on Biotechnology, 2017, 12, 33-56.	0.4	47
28	A Sensitive, Rapid, and Specific Technique for the Detection of Collagenase Using Zymography. Methods in Molecular Biology, 2017, 1626, 115-121.	0.4	1
29	Trehalose-Induced Structural Transition Accelerates Aggregation of α-Synuclein. Molecular Biotechnology, 2016, 58, 251-255.	1.3	15
30	Design, synthesis and biological evaluation of 5-benzylidene-2-iminothiazolidin-4-ones as selective GSK- $3\hat{l}^2$ inhibitors. European Journal of Medicinal Chemistry, 2016, 121, 727-736.	2.6	34
31	Differential effect of a chemical denaturant on activity and stability of a serine protease in nonaqueous media. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 32-36.	1.8	3
32	Specific detection of tetanus toxoid using an aptamer-based matrix. Journal of Biotechnology, 2016, 238, 15-21.	1.9	7
33	Protein aggregation activates erratic stress response in dietary restricted yeast cells. Scientific Reports, 2016, 6, 33433.	1.6	8
34	Cellular toxicity of yeast prion protein Rnq1 can be modulated by N-terminal wild type huntingtin. Archives of Biochemistry and Biophysics, 2016, 590, 82-89.	1.4	3
35	Gpd1 Regulates the Activity of Tcp-1 and Heat Shock Response in Yeast Cells: Effect on Aggregation of Mutant Huntingtin. Molecular Neurobiology, 2016, 53, 3900-3913.	1.9	2
36	Understanding Caffeine's Role in Attenuating the Toxicity of α-Synuclein Aggregates: Implications for Risk of Parkinson's Disease. ACS Chemical Neuroscience, 2015, 6, 1613-1625.	1.7	32

#	Article	IF	CITATIONS
37	Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington's Disease. Molecular Therapy, 2015, 23, 1912-1926.	3.7	34
38	Nucleic Acid Aptamers Stabilize Proteins Against Different Types of Stress Conditions. Journal of Pharmaceutical Sciences, 2014, 103, 100-106.	1.6	11
39	Simultaneous Purification and Refolding of Proteins by Affinity Precipitation and Macro (Affinity) Tj ETQq1 1 0.78	34314 rgB ⁻ 0.4	Г/gverlock I
40	Deciphering the Roles of Trehalose and Hsp104 in the Inhibition of Aggregation of Mutant Huntingtin in a Yeast Model of Huntington's Disease. NeuroMolecular Medicine, 2014, 16, 280-291.	1.8	27
41	Roles of Hsp104 and trehalose in solubilisation of mutant huntingtin in heat shocked Saccharomyces cerevisiae cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 746-757.	1.9	14
42	Activation of salt shock response leads to solubilisation of mutant huntingtin in Saccharomyces cerevisiae. Cell Stress and Chaperones, 2014, 19, 667-673.	1.2	5
43	Cytotoxicity of Mutant Huntingtin Fragment in Yeast Can Be Modulated by the Expression Level of Wild Type Huntingtin Fragment. ACS Chemical Neuroscience, 2014, 5, 205-215.	1.7	13
44	Effect of endogenous Hsp104 chaperone in yeast models of sporadic and familial Parkinson's disease. International Journal of Biochemistry and Cell Biology, 2014, 55, 87-92.	1.2	6
45	Effect of osmolytes on the fibrillation of HypF-N. Biochimie, 2013, 95, 2190-2193.	1.3	6
46	Nucleic Acid Aptamers as Stabilizers of Proteins: The Stability of Tetanus Toxoid. Pharmaceutical Research, 2013, 30, 1871-1882.	1.7	15
47	Stabilization of bovine insulin against agitation-induced aggregation using RNA aptamers. International Journal of Pharmaceutics, 2013, 452, 257-265.	2.6	10
48	Hsp104 as a key modulator of prion-mediated oxidative stress in <i>Saccharomyces cerevisiae</i> Biochemical Journal, 2013, 454, 217-225.	1.7	15
49	Correlation between Al ³⁺ â€induced thermal stability and inhibition of fibrillation of Nâ€terminal domain of the hydrogenase maturation factor. BioFactors, 2013, 39, 597-607.	2.6	1
50	High Activity Preparations of Lipases and Proteases for Catalysis in Low Water Containing Organic Solvents and Ionic Liquids. Methods in Molecular Biology, 2013, 1051, 275-284.	0.4	2
51	Length of polyglutamine tract affects secondary and tertiary structures of huntingtin protein. International Journal of Biological Macromolecules, 2012, 51, 920-925.	3.6	6
52	Effect of Pesticides on the Aggregation of Mutant Huntingtin Protein. Molecular Neurobiology, 2012, 45, 405-414.	1.9	17
53	Stabilization of tetanus toxoid formulation containing aluminium hydroxide adjuvant against agitation. International Journal of Pharmaceutics, 2012, 423, 297-302.	2.6	7
54	Effect of Chemical Chaperones in Improving the Solubility of Recombinant Proteins in Escherichia coli. Applied and Environmental Microbiology, 2011, 77, 4603-4609.	1.4	72

#	Article	IF	Citations
55	Making sense of therapeutics using antisense technology. Expert Opinion on Drug Discovery, 2011, 6, 507-526.	2.5	25
56	Modulation of $\hat{l}\pm\hat{a}$ synuclein aggregation by dopamine in the presence of MPTP and its metabolite. FEBS Journal, 2011, 278, 1688-1698.	2.2	33
57	Accelerated Stability Studies for Moisture-Induced Aggregation of Tetanus Toxoid. Pharmaceutical Research, 2011, 28, 626-639.	1.7	8
58	Probing the mechanism of insulin aggregation during agitation. International Journal of Pharmaceutics, 2011, 413, 73-80.	2.6	40
59	Stabilization of tetanus toxoid formulation containing aluminium hydroxide adjuvant against freeze-thawing. International Journal of Pharmaceutics, 2011, 414, 140-147.	2.6	19
60	Effect of disaccharides on the stabilization of bovine trypsin against detergent and autolysis. Biotechnology Progress, 2010, 26, 627-635.	1.3	17
61	Trehalose and Protein Stability. Current Protocols in Protein Science, 2010, 59, Unit 4.9.	2.8	71
62	Effect of trehalose on protein structure. Protein Science, 2009, 18, 24-36.	3.1	640
63	A sensitive, rapid and specific technique for the detection of collagenase using zymography. Electrophoresis, 2008, 29, 1585-1588.	1.3	7
64	Role of trehalose in moisture-induced aggregation of bovine serum albumin. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 824-834.	2.0	48
65	Design and development of antisense drugs. Expert Opinion on Drug Discovery, 2008, 3, 1189-1207.	2.5	16
66	Therapeutic applications of aptamers. Expert Opinion on Investigational Drugs, 2008, 17, 43-60.	1.9	79
67	Leveraging protein purification strategies in proteomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849, 32-42.	1.2	32
68	Design of Smart Biocatalysts. Methods in Biotechnology, 2006, , 87-95.	0.2	8
69	Affinity-Based Strategies for Protein Purification. Analytical Chemistry, 2006, 78, 3499-3504.	3.2	40
70	Enhancing reaction rate for transesterification reaction catalyzed by Chromobacterium lipase. Enzyme and Microbial Technology, 2005, 36, 896-899.	1.6	14
71	Recovery of biological activity in reversibly inactivated proteins by three phase partitioning. Enzyme and Microbial Technology, 2005, 37, 113-120.	1.6	25
72	Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. Journal of Chromatography A, 2005, 1069, 155-161.	1.8	108

#	Article	IF	Citations
73	Simultaneous refolding/purification of xylanase with a microwave treated smart polymer. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1747, 179-187.	1.1	17
74	\hat{l}_{\pm} -Chymotrypsin shows higher activity in water as well as organic solvents after three phase partitioning. Biocatalysis and Biotransformation, 2004, 22, 261-268.	1.1	19
75	Enhancement of Catalytic Efficiencies of Xylanase, Pectinase and Cellulase by Microwave Pretreatment of their Substrates. Biocatalysis and Biotransformation, 2004, 22, 9-16.	1.1	9
76	Enzymes in organic media. FEBS Journal, 2004, 271, 2575-2583.	0.2	208
77	Evaluation of Microbeads of Calcium Alginate as a Fluidized Bed Medium for Affinity Chromatography of Aspergillus niger Pectinase. Biotechnology Progress, 2004, 20, 1490-1495.	1.3	14
78	Obtaining higher transesterification rates with subtilisin Carlsberg in nonaqueous media. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 887-889.	1.0	27
79	Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme and Microbial Technology, 2004, 34, 26-32.	1.6	129
80	Preparation of highly active \hat{l}_{\pm} -chymotrypsin for catalysis in organic media. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2191-2193.	1.0	43
81	Three-phase partitioning for simultaneous renaturation and partial purification of Aspergillus niger xylanase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 107-110.	1.1	37
82	Smart Biocatalysts: Design and Applications. Advances in Biochemical Engineering/Biotechnology, 2004, 86, 159-189.	0.6	27
83	Freeze-drying of proteins: some emerging concerns. Biotechnology and Applied Biochemistry, 2004, 39, 165.	1.4	217
84	A Smart Bioconjugate of Trypsin with Alginate. Artificial Cells, Blood Substitutes, and Biotechnology, 2004, 32, 325-337.	0.9	7
85	An Integrated Process for Purification of Lysozyme, Ovalbumin, and Ovomucoid From Hen Egg White. Applied Biochemistry and Biotechnology, 2003, 111, 55-64.	1.4	17
86	Purification of lysozyme from other hen's-egg-white proteins using metal-affinity precipitation. Biotechnology and Applied Biochemistry, 2003, 37, 9.	1.4	29
87	\hat{l}^2 -Carrageenan as a new smart macroaffinity ligand for the purification of pullulanase. Journal of Chromatography A, 2003, 998, 103-108.	1.8	22
88	Smart Polymeric Materials. Chemistry and Biology, 2003, 10, 1161-1171.	6.2	324
89	Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification. Tetrahedron, 2003, 59, 5431-5436.	1.0	55
90	Lactose hydrolysis by Lactozymâ, immobilized on cellulose beads in batch and fluidized bed modes. Process Biochemistry, 2003, 39, 325-332.	1.8	115

#	Article	IF	Citations
91	Evaluation of a smart bioconjugate of pectinase for chitin hydrolysis. Biochemical Engineering Journal, 2003, 16, 329-335.	1.8	35
92	A Smart Bioconjugate of Alginate and Pectinase with Unusual Biological Activity toward Chitosan. Biotechnology Progress, 2003, 19, 1654-1658.	1.3	26
93	Accelerating Enzymatic Hydrolysis of Chitin by Microwave Pretreatment. Biotechnology Progress, 2003, 19, 1648-1653.	1.3	34
94	Repeated Enzymatic Hydrolysis of Polygalacturonic Acid, Chitosan and Chitin Using a Novel Reversibly-soluble Pectinase with the Aid of \hat{l}^2 -carrageenan. Biocatalysis and Biotransformation, 2003, 21, 297-304.	1.1	13
95	Separation of an Isoenzyme of Polyphenol Oxidase from Duranta plumieri by Expanded Bed Chromatography. Protein Expression and Purification, 2002, 24, 181-187.	0.6	10
96	Unexpected affinity of polysaccharides and its application in separation of enzymes on fluidized beds. Separation Science and Technology, 2002, 37, 1591-1610.	1.3	5
97	Three-Phase Affinity Partitioning of Proteins. Analytical Biochemistry, 2002, 300, 11-14.	1.1	62
98	Purification of a bacterial pullulanase on a fluidized bed of calcium alginate beads. Journal of Chromatography A, 2002, 950, 131-137.	1.8	17
99	Title is missing!. Biotechnology Letters, 2002, 24, 2005-2009.	1.1	5
100	Macroaffinity Ligands in Bioseparation. , 2002, , 130-147.		5
101	Applied biocatalysis: an overview. Indian Journal of Biochemistry and Biophysics, 2002, 39, 220-8.	0.2	15
102	Exploiting unusual affinity of usual polysaccharides for separation of enzymes on fluidized beds. Enzyme and Microbial Technology, 2000, 27, 53-65.	1.6	34
103	Simultaneous purification and immobilization of Aspergillus niger xylanase on the reversibly soluble polymer EudragitTM L-100. Enzyme and Microbial Technology, 2000, 27, 672-679.	1.6	93
104	Purification of a 'double-headed' inhibitor of alpha-amylase/proteinase K from wheat germ by expanded bed chromatography., 2000, 9, 239-245.		12
105	Purification of alkaline phosphatase from chicken intestine by expanded-bed affinity chromatography on dye-linked cellulose. Biotechnology and Applied Biochemistry, 2000, 32, 81.	1.4	10
106	Title is missing!. Bioseparation, 1999, 8, 317-326.	0.7	28