Joris de Wit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7717128/publications.pdf

Version: 2024-02-01

172207 205818 4,485 52 29 48 citations h-index g-index papers 60 60 60 6443 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Brain-derived neurotrophic factor in the ventral midbrain–nucleus accumbens pathway: a role in depression. Biological Psychiatry, 2003, 54, 994-1005.	0.7	375
2	LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation. Neuron, 2009, 64, 799-806.	3.8	338
3	Expression of the Gene Encoding the Chemorepellent Semaphorin III Is Induced in the Fibroblast Component of Neural Scar Tissue Formed Following Injuries of Adult But Not Neonatal CNS. Molecular and Cellular Neurosciences, 1999, 13, 143-166.	1.0	290
4	Tau association with synaptic vesicles causes presynaptic dysfunction. Nature Communications, 2017, 8, 15295.	5.8	289
5	Specification of synaptic connectivity by cell surface interactions. Nature Reviews Neuroscience, 2016, 17, 4-4.	4.9	274
6	FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development. Neuron, 2012, 73, 903-910.	3.8	221
7	Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation. Cell Reports, 2015, 11, 1176-1183.	2.9	206
8	Secreted amyloid- \hat{l}^2 precursor protein functions as a GABA <code>_B</code> R1a ligand to modulate synaptic transmission. Science, 2019, 363, .	6.0	205
9	Molecular Mechanisms of Synaptic Specificity inÂDeveloping Neural Circuits. Neuron, 2010, 68, 9-18.	3.8	154
10	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	5.8	152
11	Synaptogyrin-3 Mediates Presynaptic Dysfunction Induced by Tau. Neuron, 2018, 97, 823-835.e8.	3.8	151
12	Unbiased Discovery of Glypican as a Receptor for LRRTM4 in Regulating Excitatory Synapse Development. Neuron, 2013, 79, 696-711.	3.8	134
13	Role of Leucine-Rich Repeat Proteins in the Development and Function of Neural Circuits. Annual Review of Cell and Developmental Biology, 2011, 27, 697-729.	4.0	133
14	Role of semaphorins in the adult nervous system. Progress in Neurobiology, 2003, 71, 249-267.	2.8	125
15	Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Molecular and Cellular Neurosciences, 2005, 29, 40-55.	1.0	122
16	Transient downregulation of sema3a mrna in a rat model for temporal lobe epilepsy A novel molecular event potentially contributing to mossy fiber sprouting. Experimental Neurology, 2003, 182, 142-150.	2.0	86
17	PTPÏ f functions as a presynaptic receptor for the glypican-4/LRRTM4 complex and is essential for excitatory synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1874-1879.	3.3	86
18	Control of neural circuit formation by leucine-rich repeat proteins. Trends in Neurosciences, 2014, 37, 539-550.	4.2	78

#	Article	IF	CITATIONS
19	Heparan Sulfate Proteoglycans as Emerging Players in Synaptic Specificity. Frontiers in Molecular Neuroscience, 2018, 11, 14.	1.4	78
20	The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors. Neuron, 2015, 87, 764-780.	3.8	71
21	Vesicular Trafficking of Semaphorin 3A is Activity-Dependent and Differs Between Axons and Dendrites. Traffic, 2006, 7, 1060-1077.	1.3	67
22	NGL-2 Regulates Input-Specific Synapse Development in CA1 Pyramidal Neurons. Neuron, 2012, 76, 762-775.	3.8	63
23	An Input-Specific Orphan Receptor GPR158-HSPG Interaction Organizes Hippocampal Mossy Fiber-CA3 Synapses. Neuron, 2018, 100, 201-215.e9.	3.8	60
24	Matrix-Dependent Local Retention of Secretory Vesicle Cargo in Cortical Neurons. Journal of Neuroscience, 2009, 29, 23-37.	1.7	58
25	A Modular Organization of LRR Protein-Mediated Synaptic Adhesion Defines Synapse Identity. Neuron, 2018, 99, 329-344.e7.	3.8	57
26	Structural Mechanism for Modulation of Synaptic Neuroligin-Neurexin Signaling by MDGA Proteins. Neuron, 2017, 95, 896-913.e10.	3.8	55
27	Transsynaptic Binding of Orphan Receptor GPR179 to Dystroglycan-Pikachurin Complex Is Essential for the Synaptic Organization of Photoreceptors. Cell Reports, 2018, 25, 130-145.e5.	2.9	53
28	Proteoglycans as Modulators of Axon Guidance Cue Function. Advances in Experimental Medicine and Biology, 2007, 600, 73-89.	0.8	47
29	Lowering Synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron, 2021, 109, 767-777.e5.	3.8	41
30	Overexpression of a truncated TrkB isoform increases the proliferation of neural progenitors. European Journal of Neuroscience, 2006, 24, 1277-1285.	1.2	40
31	SorCS1-mediated sorting in dendrites maintains neurexin axonal surface polarization required for synaptic function. PLoS Biology, 2019, 17, e3000466.	2.6	38
32	Nuclear import of the <scp>DSCAM</scp> ytoplasmic domain drives signaling capable of inhibiting synapse formation. EMBO Journal, 2019, 38, .	3.5	37
33	Synapse type-specific proteomic dissection identifies IgSF8 as a hippocampal CA3 microcircuit organizer. Nature Communications, 2020, 11, 5171.	5.8	35
34	Synapse biology in the â€~circuit-age'— paths toward molecular connectomics. Current Opinion in Neurobiology, 2017, 42, 102-110.	2.0	32
35	Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity. Experimental and Molecular Medicine, 2018, 50, 1-9.	3.2	29
36	Contribution of GABAergic interneurons to amyloid- \hat{l}^2 plaque pathology in an APP knock-in mouse model. Molecular Neurodegeneration, 2020, 15, 3.	4.4	26

#	Article	IF	Citations
37	Long-Term Adeno-Associated Viral Vector-Mediated Expression of Truncated TrkB in the Adult Rat Facial Nucleus Results in Motor Neuron Degeneration. Journal of Neuroscience, 2006, 26, 1516-1530.	1.7	23
38	Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis. Nature Protocols, 2014, 9, 2061-2074.	5 . 5	21
39	Heterotypic Amyloid \hat{l}^2 interactions facilitate amyloid assembly and modify amyloid structure. EMBO Journal, 2022, 41, e108591.	3 . 5	19
40	Compartmentalized distributions of neuronal and glial cell-surface proteins pattern the synaptic network. Current Opinion in Neurobiology, 2019, 57, 126-133.	2.0	18
41	Synaptogenic activity of the axon guidance molecule Robo2 underlies hippocampal circuit function. Cell Reports, 2021, 37, 109828.	2.9	18
42	Semaphorins: contributors to structural stability of hippocampal networks?. Progress in Brain Research, 2002, 138, 17-38.	0.9	16
43	Trafficking mechanisms of synaptogenic cell adhesion molecules. Molecular and Cellular Neurosciences, 2018, 91, 34-47.	1.0	15
44	Use of GFP to Analyze Morphology, Connectivity, and Function of Cells in the Central Nervous System. Methods in Molecular Biology, 2009, 515, 63-95.	0.4	10
45	MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. ELife, 2022, 11 , .	2.8	9
46	Neuronal Polarity: MAP2 Shifts Secretory Vesicles into High Gear for Long-Haul Transport down the Axon. Neuron, 2017, 94, 223-225.	3.8	7
47	Role of regulatory Câ€ŧerminal motifs in synaptic confinement of LRRTM2. Biology of the Cell, 2021, 113, 492-506.	0.7	1
48	Astrocytes Supply Presynaptic Terminals with a Sweet Incentive to Make Connections. Developmental Cell, 2017, 43, 261-263.	3.1	0
49	Title is missing!. , 2019, 17, e3000466.		0
50	Title is missing!. , 2019, 17, e3000466.		0
51	Title is missing!. , 2019, 17, e3000466.		0
52	Title is missing!. , 2019, 17, e3000466.		0