Tarik Taleb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7716680/publications.pdf

Version: 2024-02-01

36303 32842 12,026 191 51 100 citations h-index g-index papers 192 192 192 9110 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Al-Based Network-Aware Service Function Chain Migration in 5G and Beyond Networks. IEEE Transactions on Network and Service Management, 2022, 19, 472-484.	4.9	16
2	QoS and Resource-Aware Security Orchestration and Life Cycle Management. IEEE Transactions on Mobile Computing, 2022, 21, 2978-2993.	5.8	9
3	Resource Allocation Modeling for Fine-Granular Network Slicing in Beyond 5G Systems. IEICE Transactions on Communications, 2022, E105.B, 349-363.	0.7	2
4	Deep-Reinforcement-Learning-Based Collision Avoidance in UAV Environment. IEEE Internet of Things Journal, 2022, 9, 4015-4030.	8.7	24
5	Deterministic Latency Bounded Network Slice Deployment in IP-Over-WDM Based Metro-Aggregation Networks. IEEE Transactions on Network Science and Engineering, 2022, 9, 596-607.	6.4	9
6	Buffer Space Management in Intermittently Connected Internet of Things: Sharing or Allocation?. IEEE Internet of Things Journal, 2022, 9, 10961-10977.	8.7	2
7	Deep data plane programming and Al for zero-trust self-driven networking in beyond 5G. Computer Networks, 2022, 203, 108668.	5.1	22
8	A Cross-Layer Green Information-Centric Networking Design Toward the Energy Internet. IEEE Transactions on Network Science and Engineering, 2022, 9, 1577-1593.	6.4	6
9	Covert Communication for Cellular and X2U-Enabled UAV Networks with Active and Passive Wardens. IEEE Network, 2022, 36, 166-173.	6.9	8
10	Dynamic Task Allocation and Service Migration in Edge-Cloud IoT System Based on Deep Reinforcement Learning. IEEE Internet of Things Journal, 2022, 9, 16742-16757.	8.7	18
11	Deterministic Latency/Jitter-Aware Service Function Chaining Over Beyond 5G Edge Fabric. IEEE Transactions on Network and Service Management, 2022, 19, 2148-2162.	4.9	13
12	Joint Caching and Computing Service Placement for Edge-Enabled IoT Based on Deep Reinforcement Learning. IEEE Internet of Things Journal, 2022, 9, 19501-19514.	8.7	10
13	Toward Enabling Network Slice Mobility to Support 6G System. IEEE Transactions on Wireless Communications, 2022, 21, 10130-10144.	9.2	4
14	Incentive Jamming-Based Secure Routing in Decentralized Internet of Things. IEEE Internet of Things Journal, 2021, 8, 3000-3013.	8.7	34
15	Roads Infrastructure Digital Twin: A Step Toward Smarter Cities Realization. IEEE Network, 2021, 35, 136-143.	6.9	62
16	Performance, Fairness, and Tradeoff in UAV Swarm Underlaid mmWave Cellular Networks With Directional Antennas. IEEE Transactions on Wireless Communications, 2021, 20, 2383-2397.	9.2	18
17	Toward Using Reinforcement Learning for Trigger Selection in Network Slice Mobility. IEEE Journal on Selected Areas in Communications, 2021, 39, 2241-2253.	14.0	14
18	Optimization of Flow Allocation in Asynchronous Deterministic 5G Transport Networks by Leveraging Data Analytics. IEEE Transactions on Mobile Computing, 2021, , 1-1.	5.8	10

#	Article	IF	Citations
19	Toward a Real Deployment of Network Services Orchestration and Configuration Convergence Framework for 5G Network Slices. IEEE Network, 2021, 35, 242-250.	6.9	12
20	Two-Step Random Access for 5G System: Latest Trends and Challenges. IEEE Network, 2021, 35, 273-279.	6.9	32
21	Symmetry-Aware SFC Framework for 5G Networks. IEEE Network, 2021, 35, 234-241.	6.9	6
22	Guest Editorial: Special Issue on Blockchain and Edge Computing Techniques for Emerging IoT Applications. IEEE Internet of Things Journal, 2021, 8, 2082-2086.	8.7	7
23	Asynchronous Time-Sensitive Networking for 5G Backhauling. IEEE Network, 2021, 35, 144-151.	6.9	31
24	Al-Based Resource Management in Beyond 5G Cloud Native Environment. IEEE Network, 2021, 35, 128-135.	6.9	24
25	Mode Selection and Cooperative Jamming for Covert Communication in D2D Underlaid UAV Networks. IEEE Network, 2021, 35, 104-111.	6.9	18
26	Supporting Unmanned Aerial Vehicle Services in 5G Networks: New High-Level Architecture Integrating 5G With U-Space. IEEE Vehicular Technology Magazine, 2021, 16, 57-65.	3.4	13
27	Trust in 5G and Beyond Networks. IEEE Network, 2021, 35, 212-222.	6.9	48
28	Extremely Interactive and Low-Latency Services in 5G and Beyond Mobile Systems. IEEE Communications Standards Magazine, 2021, 5, 114-119.	4.9	17
29	On Sum Rate Maximization Study for Cellular-Connected UAV Swarm Communications. , 2021, , .		0
30	Distributed Al-based Security for Massive Numbers of Network Slices in 5G & Systems., 2021,,.		6
31	On Supporting UAV Based Services in 5G and Beyond Mobile Systems. IEEE Network, 2021, 35, 220-227.	6.9	9
32	Collaborative Cross System Al: Toward 5G System and Beyond. IEEE Network, 2021, 35, 286-294.	6.9	7
33	Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Communication and Networking Systems. IEEE Communications Surveys and Tutorials, 2021, 23, 1342-1397.	39.4	243
34	Attention-Weighted Federated Deep Reinforcement Learning for Device-to-Device Assisted Heterogeneous Collaborative Edge Caching. IEEE Journal on Selected Areas in Communications, 2021, 39, 154-169.	14.0	74
35	mMTC Deployment over Sliceable Infrastructure: The Megasense Scenario. IEEE Network, 2021, 35, 247-254.	6.9	7
36	Management and Orchestration of Mobile Network Services over Federated Mobile Infrastructures. IEEE Network, 2021, , 1-8.	6.9	1

#	Article	IF	Citations
37	Deep Learning for GPS Spoofing Detection in Cellular-Enabled UAV Systems. , 2021, , .		7
38	Deterministic Service Function Chaining over Beyond 5G Edge Fabric., 2021,,.		4
39	Toward Proactive Service Relocation for UAVs in MEC. , 2021, , .		2
40	A Complete LTE Mathematical Framework for the Network Slice Planning of the EPC. IEEE Transactions on Mobile Computing, 2020, 19, 1-14.	5.8	16
41	Optimization Model for Cross-Domain Network Slices in 5G Networks. IEEE Transactions on Mobile Computing, 2020, 19, 1156-1169.	5.8	51
42	Dynamic Resource Provisioning of a Scalable E2E Network Slicing Orchestration System. IEEE Transactions on Mobile Computing, 2020, 19, 2594-2608.	5.8	34
43	CDN Slicing over a Multi-Domain Edge Cloud. IEEE Transactions on Mobile Computing, 2020, 19, 2010-2027.	5.8	26
44	Physical Layer Authentication for Massive MIMO Systems With Hardware Impairments. IEEE Transactions on Wireless Communications, 2020, 19, 1563-1576.	9.2	30
45	Joint Sub-Carrier and Power Allocation for Efficient Communication of Cellular UAVs. IEEE Transactions on Wireless Communications, 2020, 19, 8287-8302.	9.2	11
46	Smooth and Low Latency Video Streaming for Autonomous Cars During Handover. IEEE Network, 2020, 34, 302-309.	6.9	20
47	Guest Editorial: Seventh Edition of the IEEE JSAC Series on Network Softwarization and Enablers. IEEE Journal on Selected Areas in Communications, 2020, 38, 1281-1284.	14.0	0
48	Semantic-Aware Security Orchestration in SDN/NFV-Enabled IoT Systems. Sensors, 2020, 20, 3622.	3.8	18
49	Energy-aware Collision Avoidance stochastic Optimizer for a UAVs set. , 2020, , .		2
50	Federated Deep Reinforcement Learning for Internet of Things With Decentralized Cooperative Edge Caching. IEEE Internet of Things Journal, 2020, 7, 9441-9455.	8.7	220
51	ZSM Security: Threat Surface and Best Practices. IEEE Network, 2020, 34, 124-133.	6.9	44
52	Service Function Chaining in 5G & Service Function Chaining Functi	6.9	32
53	Fast Service Migration in 5G Trends and Scenarios. IEEE Network, 2020, 34, 92-98.	6.9	36
54	Robust Self-Protection Against Application-Layer (D)DoS Attacks in SDN Environment. , 2020, , .		15

#	Article	IF	CITATIONS
55	A Service-Based Architecture for Enabling UAV Enhanced Network Services. IEEE Network, 2020, 34, 328-335.	6.9	38
56	Edge Caching Replacement Optimization for D2D Wireless Networks via Weighted Distributed DQN. , 2020, , .		12
57	Al-Driven Zero Touch Network and Service Management in 5G and Beyond: Challenges and Research Directions. IEEE Network, 2020, 34, 186-194.	6.9	149
58	The Road beyond 5G: A Vision and Insight of the Key Technologies. IEEE Network, 2020, 34, 135-141.	6.9	125
59	Network Slice Mobility in Next Generation Mobile Systems: Challenges and Potential Solutions. IEEE Network, 2020, 34, 84-93.	6.9	52
60	Toward ML/Al-Based Prediction of Mobile Service Usage in Next-Generation Networks. IEEE Network, 2020, 34, 106-111.	6.9	6
61	On SDN-Driven Network Optimization and QoS Aware Routing Using Multiple Paths. IEEE Transactions on Wireless Communications, 2020, 19, 4700-4714.	9.2	34
62	A Machine Learning Security Framework for lot Systems. IEEE Access, 2020, 8, 114066-114077.	4.2	111
63	Guest Editorial: Introduction to Special Section on Smart Systems and Intelligent Networking Powered With Big Data Analytics. IEEE Transactions on Network Science and Engineering, 2020, 7, 2526-2527.	6.4	0
64	A Survey on Emerging SDN and NFV Security Mechanisms for IoT Systems. IEEE Communications Surveys and Tutorials, 2019, 21, 812-837.	39.4	279
65	Traffic Steering for Service Function Chaining. IEEE Communications Surveys and Tutorials, 2019, 21, 487-507.	39 . 4	74
66	On Multi-Domain Network Slicing Orchestration Architecture and Federated Resource Control. IEEE Network, 2019, 33, 242-252.	6.9	94
67	Editorial Third Edition of the IEEE JSAC Series on Network Softwarization & Enablers. IEEE Journal on Selected Areas in Communications, 2019, 37, 481-483.	14.0	1
68	Network Slicing-Based Customization of 5G Mobile Services. IEEE Network, 2019, 33, 134-141.	6.9	39
69	Dynamic Maps for Automated Driving and UAV Geofencing. IEEE Wireless Communications, 2019, 26, 54-59.	9.0	45
70	Fifth Edition of the IEEE JSAC Series on Network Softwarization & Enablers. IEEE Journal on Selected Areas in Communications, 2019, 37, 1685-1687.	14.0	0
71	RAPID: Contention Resolution Based Random Access Using Context ID for IoT. IEEE Transactions on Vehicular Technology, 2019, 68, 7121-7135.	6.3	7
72	Ready Player One: UAV-Clustering-Based Multi-Task Offloading for Vehicular VR/AR Gaming. IEEE Network, 2019, 33, 42-48.	6.9	71

#	Article	IF	Citations
73	Editorial Fourth Edition of the IEEE JSAC Series on Network Softwarization & Enablers. IEEE Journal on Selected Areas in Communications, 2019, 37, 965-967.	14.0	0
74	Energy and Delay Aware Task Assignment Mechanism for UAV-Based IoT Platform. IEEE Internet of Things Journal, 2019, 6, 6523-6536.	8.7	99
75	PPCS: A Progressive Popularity-Aware Caching Scheme for Edge-Based Cache Redundancy Avoidance in Information-Centric Networks. Sensors, 2019, 19, 694.	3.8	30
76	Smart Service-Oriented Clustering for Dynamic Slice Configuration., 2019, , .		1
77	Ensuring High QoE for DASH-Based Clients Using Deterministic Network Calculus in SDN Networks. , 2019, , .		1
78	Towards Studying Service Function Chain Migration Patterns in 5G Networks and Beyond., 2019,,.		7
79	Orchestrating 5G Network Slices to Support Industrial Internet and to Shape Next-Generation Smart Factories. IEEE Network, 2019, 33, 146-154.	6.9	67
80	Trust-Based Video Management Framework for Social Multimedia Networks. IEEE Transactions on Multimedia, 2019, 21, 603-616.	7.2	9
81	Assessing Lightweight Virtualization for Security-as-a-Service at the Network Edge. IEICE Transactions on Communications, 2019, E102.B, 970-977.	0.7	21
82	A Survey on the Placement of Virtual Resources and Virtual Network Functions. IEEE Communications Surveys and Tutorials, 2019, 21, 1409-1434.	39.4	179
83	Follow-Me Cloud: When Cloud Services Follow Mobile Users. IEEE Transactions on Cloud Computing, 2019, 7, 369-382.	4.4	147
84	Generalized Cooperative Multicast in Mobile Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 2631-2643.	6.3	9
85	Edge Computing for the Internet of Things: A Case Study. IEEE Internet of Things Journal, 2018, 5, 1275-1284.	8.7	436
86	On Enabling 5G Automotive Systems Using Follow Me Edge-Cloud Concept. IEEE Transactions on Vehicular Technology, 2018, 67, 5302-5316.	6.3	127
87	On Improving Video Streaming Efficiency, Fairness, Stability, and Convergence Time Through Client–Server Cooperation. IEEE Transactions on Broadcasting, 2018, 64, 11-25.	3.2	23
88	Optimal VNFs Placement in CDN Slicing Over Multi-Cloud Environment. IEEE Journal on Selected Areas in Communications, 2018, 36, 616-627.	14.0	93
89	Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions. IEEE Communications Surveys and Tutorials, 2018, 20, 2429-2453.	39.4	726
90	Conformal Mapping for Optimal Network Slice Planning Based on Canonical Domains. IEEE Journal on Selected Areas in Communications, 2018, 36, 519-528.	14.0	34

#	Article	IF	Citations
91	Coalitional Game for the Creation of Efficient Virtual Core Network Slices in 5G Mobile Systems. IEEE Journal on Selected Areas in Communications, 2018, 36, 469-484.	14.0	73
92	A Queuing Based Dynamic Auto Scaling Algorithm for the LTE EPC Control Plane. , 2018, , .		9
93	Benchmarking the ONOS Intent Interfaces to Ease 5G Service Management. , 2018, , .		12
94	UAVs Traffic Control Based on Multi-Access Edge Computing. , 2018, , .		28
95	Energy and Delay Aware Physical Collision Avoidance in Unmanned Aerial Vehicles. , 2018, , .		4
96	Scheduled Communications in Next Generationmobile Networks. , 2018, , .		0
97	Integrated ICN and CDN Slice as a Service. , 2018, , .		9
98	Lightweight Virtualization Based Security Framework for Network Edge. , 2018, , .		7
99	MIRA!: An SDN-Based Framework for Cross-Domain Fast Migration of Ultra-Low Latency 5G Services. , 2018, , .		11
100	Towards Modeling Cross-Domain Network Slices for 5G., 2018,,.		22
101	Towards Mitigating the Impact of UAVs on Cellular Communications. , 2018, , .		13
102	Towards a Fast Service Migration in 5G. , 2018, , .		21
103	Second Edition of the IEEE JSAC Series on Network Softwarization & Enablers. IEEE Journal on Selected Areas in Communications, 2018, 36, 2155-2157.	14.0	0
104	Aerial Control System for Spectrum Efficiency in UAV-to-Cellular Communications. IEEE Communications Magazine, 2018, 56, 108-113.	6.1	57
105	Constraint Hubs Deployment for Efficient Machine-Type Communications. IEEE Transactions on Wireless Communications, 2018, 17, 7936-7951.	9.2	3
106	Content-Centric Collaborative Edge Caching in 5G Mobile Internet. IEEE Wireless Communications, 2018, 25, 10-11.	9.0	5
107	Survey on Multi-Access Edge Computing for Internet of Things Realization. IEEE Communications Surveys and Tutorials, 2018, 20, 2961-2991.	39.4	535
108	Guest Editorial First Edition of Series On Network Softwarization and Enablers. IEEE Journal on Selected Areas in Communications, 2018, 36, 381-383.	14.0	0

#	Article	IF	CITATIONS
109	Enhancing IoT security through network softwarization and virtual security appliances. International Journal of Network Management, 2018, 28, e2038.	2.2	34
110	Optimal Placement of Relay Nodes Over Limited Positions in Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2017, 16, 2205-2219.	9.2	44
111	An Accurate Security Game for Low-Resource IoT Devices. IEEE Transactions on Vehicular Technology, 2017, 66, 9381-9393.	6.3	7 5
112	Ϊμ-Time Early Warning Data Backup in Disaster-Aware Optical Inter-Connected Data Center Networks. Journal of Optical Communications and Networking, 2017, 9, 536.	4.8	18
113	PERMIT: Network Slicing for Personalized 5G Mobile Telecommunications. IEEE Communications Magazine, 2017, 55, 88-93.	6.1	114
114	NFV: Security Threats and Best Practices. IEEE Communications Magazine, 2017, 55, 211-217.	6.1	120
115	On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Communications Surveys and Tutorials, 2017, 19, 1657-1681.	39.4	1,271
116	On Performance Modeling for MANETs Under General Limited Buffer Constraint. IEEE Transactions on Vehicular Technology, 2017, 66, 9483-9497.	6.3	21
117	Evaluating Performance of Containerized IoT Services for Clustered Devices at the Network Edge. IEEE Internet of Things Journal, 2017, 4, 1019-1030.	8.7	94
118	Mobile Edge Computing Potential in Making Cities Smarter., 2017, 55, 38-43.		312
119	Content delivery network slicing: QoE and cost awareness. , 2017, , .		41
120	QoE estimation-based server benchmarking for virtual video delivery platform. , 2017, , .		6
121	Optimizing service replication for mobile delay-sensitive applications in 5G edge network. , 2017, , .		48
122	Service Function Chaining in Next Generation Networks: State of the Art and Research Challenges. IEEE Communications Magazine, 2017, 55, 216-223.	6.1	242
123	Ensuring End-to-End QoS Based on Multi-Paths Routing Using SDN Technology. , 2017, , .		47
124	End-to-end Network Slicing for 5G Mobile Networks. Journal of Information Processing, 2017, 25, 153-163.	0.4	106
125	Online Server-Side Optimization Approach for Improving QoE of DASH Clients. , 2017, , .		8
126	Towards 5G Network Slicing over Multiple-Domains. IEICE Transactions on Communications, 2017, E100.B, 1992-2006.	0.7	47

#	Article	IF	CITATIONS
127	Prioritization-based Layered Multicast for Fixed/Mobile Networks with Fast Convergence and Inter-Session Fairness. Journal of Communications Software and Systems, 2017, 2, 89.	0.8	2
128	Group vertical handoff management in heterogeneous networks. Wireless Communications and Mobile Computing, 2016, 16, 1256-1270.	1.2	10
129	On Using SDN in 5G: The Controller Placement Problem. , 2016, , .		63
130	On-the-Fly QoE-Aware Transcoding in the Mobile Edge. , 2016, , .		43
131	Security/QoS-aware route selection in multi-hop wireless ad hoc networks. , 2016, , .		20
132	One-Step Approach for Two-Tiered Constrained Relay Node Placement in Wireless Sensor Networks. IEEE Wireless Communications Letters, 2016, 5, 448-451.	5.0	30
133	QoE-aware elasticity support in cloud-native 5G systems. , 2016, , .		42
134	An architecture for on-demand service deployment over a telco CDN. , 2016, , .		36
135	On using bargaining game for Optimal Placement of SDN controllers. , 2016, , .		75
136	Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives. IEEE Internet of Things Journal, 2016, 3, 899-922.	8.7	645
137	"Anything as a Service" for 5G Mobile Systems. IEEE Network, 2016, 30, 84-91.	6.9	84
138	Group Paging-Based Energy Saving for Massive MTC Accesses in LTE and Beyond Networks. IEEE Journal on Selected Areas in Communications, 2016, 34, 1086-1102.	14.0	66
139	Fine-grained resource-aware virtual network function management for 5G carrier cloud. IEEE Network, 2016, 30, 110-115.	6.9	59
140	On Service Resilience in Cloud-Native 5G Mobile Systems. IEEE Journal on Selected Areas in Communications, 2016, 34, 483-496.	14.0	74
141	Efficient Tracking Area Management Framework forÂ5G Networks. IEEE Transactions on Wireless Communications, 2016, 15, 4117-4131.	9.2	24
142	QoE-Based Flow Admission Control in Small Cell Networks. IEEE Transactions on Wireless Communications, 2016, 15, 2474-2483.	9.2	24
143	An Unlicensed Taxi Identification Model Based on Big Data Analysis. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 1703-1713.	8.0	80
144	MM3C: Multi-Source Mobile Streaming in Cache-Enabled Content-Centric Networks. , 2015, , .		5

#	Article	IF	CITATIONS
145	Efficient Tracking Area Management in Carrier Cloud. , 2015, , .		4
146	Efficient Solutions for Enhancing Data Traffic Management in 3GPP Networks. IEEE Systems Journal, 2015, 9, 519-528.	4.6	11
147	EASE: EPC as a service to ease mobile core network deployment over cloud. IEEE Network, 2015, 29, 78-88.	6.9	143
148	Cloud-based Wireless Network: Virtualized, Reconfigurable, Smart Wireless Network to Enable 5G Technologies. Mobile Networks and Applications, 2015, 20, 704-712.	3.3	96
149	Toward Elastic Distributed SDN/NFV Controller for 5G Mobile Cloud Management Systems. IEEE Access, 2015, 3, 2055-2064.	4.2	51
150	User mobility-aware Virtual Network Function placement for Virtual 5G Network Infrastructure. , 2015, , .		99
151	An Integrated Predictive Mobile-Oriented Bandwidth-Reservation Framework to Support Mobile Multimedia Streaming. IEEE Transactions on Wireless Communications, 2014, 13, 6863-6875.	9.2	18
152	Service-aware network function placement for efficient traffic handling in carrier cloud. , 2014, , .		94
153	A LISP-Based Implementation of Follow Me Cloud. IEEE Access, 2014, 2, 1340-1347.	4.2	33
154	Lightweight Mobile Core Networks for Machine Type Communications. IEEE Access, 2014, 2, 1128-1137.	4.2	110
155	Sailing over Data Mules in Delay-Tolerant Networks. IEEE Transactions on Wireless Communications, 2014, 13, 5-13.	9.2	23
156	VENDNET: VEhicular Named Data NETwork. Vehicular Communications, 2014, 1, 208-213.	4.0	66
157	Supporting Highly Mobile Users in Cost-Effective Decentralized Mobile Operator Networks. IEEE Transactions on Vehicular Technology, 2014, 63, 3381-3396.	6.3	22
158	Toward carrier cloud: Potential, challenges, and solutions. IEEE Wireless Communications, 2014, 21, 80-91.	9.0	123
159	On alleviating MTC overload in EPS. Ad Hoc Networks, 2014, 18, 24-39.	5. 5	15
160	Efficient Tracking Area Management in Carrier Cloud. , 2014, , .		3
161	MM3C: Multi-Source Mobile Streaming in Cache-Enabled Content-Centric Networks. , 2014, , .		3
162	Dynamic Multilevel Priority Packet Scheduling Scheme for Wireless Sensor Network. IEEE Transactions on Wireless Communications, 2013, 12, 1448-1459.	9.2	98

#	Article	IF	Citations
163	QoE-Oriented Adaptive SVC Decoding in DVB-T2. IEEE Transactions on Broadcasting, 2013, 59, 251-264.	3.2	12
164	Follow me cloud: interworking federated clouds and distributed mobile networks. IEEE Network, 2013, 27, 12-19.	6.9	218
165	Gateway relocation avoidance-aware network function placement in carrier cloud., 2013,,.		35
166	Feedback Suppression in Multicast Satellite Networks Using Game Theory. IEEE Systems Journal, 2012, 6, 657-666.	4.6	20
167	Cellular-based machine-to-machine: overload control. IEEE Network, 2012, 26, 54-60.	6.9	86
168	<i>QoS $<$ i> $<$ sup>2 $<$ sup>: a framework for integrating quality of security with quality of service. Security and Communication Networks, 2012, 5, 1462-1470.	1.5	13
169	Machine type communications in 3GPP networks: potential, challenges, and solutions. , 2012, 50, 178-184.		324
170	Self Organized Network Management Functions for Energy Efficient Cellular Urban Infrastructures. Mobile Networks and Applications, 2012, 17, 119-131.	3.3	21
171	Dynamic Clustering-Based Adaptive Mobile Gateway Management in Integrated VANET — 3G Heterogeneous Wireless Networks. IEEE Journal on Selected Areas in Communications, 2011, 29, 559-570.	14.0	186
172	Supporting context-aware applications for eldercare. Journal of Communications and Networks, 2011, 13, 95-101.	2.6	4
173	An Auction-Based Pareto-Optimal Strategy for Dynamic and Fair Allotment of Resources in Wireless Mobile Networks. IEEE Transactions on Vehicular Technology, 2011, 60, 4587-4597.	6.3	11
174	\$MS^{2}\$: A New Real-Time Multi-Source Mobile-Streaming Architecture. IEEE Transactions on Broadcasting, 2011, 57, 662-673.	3.2	21
175	Mobility-Aware Streaming Rate Recommendation System., 2011,,.		8
176	Toward an Effective Risk-Conscious and Collaborative Vehicular Collision Avoidance System. IEEE Transactions on Vehicular Technology, 2010, 59, 1474-1486.	6.3	131
177	A Novel Middleware Solution to Improve Ubiquitous Healthcare Systems Aided by Affective Information. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 335-349.	3.2	38
178	DTRAB: Combating Against Attacks on Encrypted Protocols Through Traffic-Feature Analysis. IEEE/ACM Transactions on Networking, 2010, 18, 1234-1247.	3.8	117
179	A cooperative diversity based handoff management scheme. IEEE Transactions on Wireless Communications, 2010, 9, 1462-1471.	9.2	32
180	Protocols for reliable data transport in space internet. IEEE Communications Surveys and Tutorials, 2009, 11, 21-32.	39.4	57

#	Article	IF	CITATIONS
181	Next generation wireless communications and mobile computing/networking technologies. Wireless Communications and Mobile Computing, 2009, 9, 441-443.	1.2	0
182	Combating against internet worms in large-scale networks: an autonomic signature-based solution. Security and Communication Networks, 2009, 2, 11-28.	1.5	9
183	Angelah: a framework for assisting elders at home. IEEE Journal on Selected Areas in Communications, 2009, 27, 480-494.	14.0	69
184	Bandwidth Aggregation-Aware Dynamic QoS Negotiation for Real-Time Video Streaming in Next-Generation Wireless Networks. IEEE Transactions on Multimedia, 2009, 11, 1082-1093.	7.2	51
185	An adaptive fuzzy-based CAC scheme for uplink and downlink congestion control in converged IP and DVB-S2 networks. IEEE Transactions on Wireless Communications, 2009, 8, 816-825.	9.2	3
186	Detecting and avoiding wormhole attacks in wireless ad hoc networks. IEEE Communications Magazine, 2008, 46, 127-133.	6.1	82
187	A Cross-Layer Approach for an Efficient Delivery of TCP/RTP-Based Multimedia Applications in Heterogeneous Wireless Networks. IEEE Transactions on Vehicular Technology, 2008, 57, 3801-3814.	6.3	27
188	An Efficient Collision Avoidance Strategy for ITS systems. , 2008, , .		19
189	Toward Efficient Service-Level QoS Provisioning in Large-Scale 802.11-Based Networks. IEEE Network, 2007, 21, 42-48.	6.9	7
190	Enhancements of T-REFWA to mitigate link error-related degradations in hybrid wired/wireless networks. Journal of Communications and Networks, 2006, 8, 391-400.	2.6	1
191	Neighbors-buffering-based video-on-demand architecture. Signal Processing: Image Communication, 2003, 18, 515-526.	3.2	21