José M Cuezva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7716269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy. Molecular Metabolism, 2022, 60, 101496.	6.5	7
2	The ATPase Inhibitory Factor 1 is a Tissue-Specific Physiological Regulator of the Structure and Function of Mitochondrial ATP Synthase: A Closer Look Into Neuronal Function. Frontiers in Physiology, 2022, 13, .	2.8	7
3	Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis, 2022, 11, 24.	4.9	7
4	Chronic inhibition of the mitochondrial ATP synthase in skeletal muscle triggers sarcoplasmic reticulum distress and tubular aggregates. Cell Death and Disease, 2022, 13, .	6.3	5
5	Mitochondrial Elongation and OPA1 Play Crucial Roles during the Stemness Acquisition Process in Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 3432.	3.7	8
6	Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition. PLoS Biology, 2021, 19, e3001252.	5.6	22
7	Critical requirement of SOS1 RAS-GEF function for mitochondrial dynamics, metabolism, and redox homeostasis. Oncogene, 2021, 40, 4538-4551.	5.9	13
8	Effective therapeutic strategies in a preclinical mouse model of Charcot–Marie–Tooth disease. Human Molecular Genetics, 2021, 30, 2441-2455.	2.9	5
9	Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxidants and Redox Signaling, 2020, 33, 927-945.	5.4	13
10	Exploiting the passenger ACO1-deficiency arising from 9p21 deletions to kill T-cell lymphoblastic neoplasia cells. Carcinogenesis, 2020, 41, 1113-1122.	2.8	6
11	Overexpression of Mitochondrial IF1 Prevents Metastatic Disease of Colorectal Cancer by Enhancing Anoikis and Tumor Infiltration of NK Cells. Cancers, 2020, 12, 22.	3.7	31
12	Coordinate β-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth. Nature Communications, 2020, 11, 3606.	12.8	62
13	Specific Effects of Trabectedin and Lurbinectedin on Human Macrophage Function and Fate—Novel Insights. Cancers, 2020, 12, 3060.	3.7	11
14	Metformin as an Adjuvant to Photodynamic Therapy in Resistant Basal Cell Carcinoma Cells. Cancers, 2020, 12, 668.	3.7	13
15	Metabolic reprogramming and disease progression in cancer patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165721.	3.8	45
16	Dysfunctional oxidative phosphorylation shunts branchedâ€chain amino acid catabolism onto lipogenesis in skeletal muscle. EMBO Journal, 2020, 39, e103812.	7.8	33
17	Changes in the Turnover of the Cellular Proteome during Metabolic Reprogramming: A Role for mtROS in Proteostasis. Journal of Proteome Research, 2019, 18, 3142-3155.	3.7	12
18	Tissueâ€specific expression and postâ€transcriptional regulation of the ATPase inhibitory factor 1 (IF1) in human and mouse tissues. FASEB Journal, 2019, 33, 1836-1851.	0.5	23

José M Cuezva

#	Article	IF	CITATIONS
19	Prognostic implications of markers of the metabolic phenotype in human cutaneous melanoma. British Journal of Dermatology, 2019, 181, 114-127.	1.5	19
20	The mitochondrial <scp>ATP</scp> synthase is a shared drug target for aging and dementia. Aging Cell, 2018, 17, e12715.	6.7	109
21	MYC Induces a Hybrid Energetics Program Early in Cell Reprogramming. Stem Cell Reports, 2018, 11, 1479-1492.	4.8	31
22	A Review of the Inhibition of the Mitochondrial ATP Synthase by IF1 in vivo: Reprogramming Energy Metabolism and Inducing Mitohormesis. Frontiers in Physiology, 2018, 9, 1322.	2.8	66
23	The Role of Mitochondrial H+-ATP Synthase in Cancer. Frontiers in Oncology, 2018, 8, 53.	2.8	58
24	Different mitochondrial genetic defects exhibit the same protein signature of metabolism in skeletal muscle of PEO and MELAS patients: A role for oxidative stress. Free Radical Biology and Medicine, 2018, 126, 235-248.	2.9	10
25	Pyruvate kinase M2 and the mitochondrial ATPase Inhibitory Factor 1 provide novel biomarkers of dermatomyositis: a metabolic link to oncogenesis. Journal of Translational Medicine, 2017, 15, 29.	4.4	16
26	Regulation of the H+-ATP synthase by IF1: a role in mitohormesis. Cellular and Molecular Life Sciences, 2017, 74, 2151-2166.	5.4	50
27	Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. Cell Reports, 2017, 19, 1202-1213.	6.4	146
28	Hif-1α Knockdown Reduces Glycolytic Metabolism and Induces Cell Death of Human Synovial Fibroblasts Under Normoxic Conditions. Scientific Reports, 2017, 7, 3644.	3.3	53
29	Mitochondrial H+-ATP synthase in human skeletal muscle: contribution to dyslipidaemia and insulin resistance. Diabetologia, 2017, 60, 2052-2065.	6.3	32
30	Overexpression of the ATPase Inhibitory Factor 1 Favors a Non-metastatic Phenotype in Breast Cancer. Frontiers in Oncology, 2017, 7, 69.	2.8	22
31	Plasma metabolome and skin proteins in Charcot-Marie-Tooth 1A patients. PLoS ONE, 2017, 12, e0178376.	2.5	16
32	Down-regulation of oxidative phosphorylation in the liver by expression of the ATPase inhibitory factor 1 induces a tumor-promoter metabolic state. Oncotarget, 2016, 7, 490-508.	1.8	59
33	The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1167-1182.	1.0	101
34	Sensitivity to anti-Fas is independent of increased cathepsin D activity and adrenodoxin reductase expression occurring in NOS-3 overexpressing HepG2 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1182-1194.	4.1	1
35	Lack of GDAP1 Induces Neuronal Calcium and Mitochondrial Defects in a Knockout Mouse Model of Charcot-Marie-Tooth Neuropathy. PLoS Genetics, 2015, 11, e1005115.	3.5	70
36	Quantitative analysis of proteins of metabolism by reverse phase protein microarrays identifies potential biomarkers of rare neuromuscular diseases. Journal of Translational Medicine, 2015, 13, 65.	4.4	22

JOSé M CUEZVA

#	Article	IF	CITATIONS
37	PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H+-ATP Synthase. Cell Reports, 2015, 12, 2143-2155.	6.4	104
38	In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning. EMBO Journal, 2014, 33, 762-778.	7.8	93
39	The H+-ATP synthase: A gate to ROS-mediated cell death or cell survival. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1099-1112.	1.0	91
40	Shortâ€ŧerm exposure of nontumorigenic human bronchial epithelial cells to carcinogenic chromium(VI) compromises their respiratory capacity and alters their bioenergetic signature. FEBS Open Bio, 2014, 4, 594-601.	2.3	19
41	Mitochondria-Mediated Energy Adaption in Cancer: The H ⁺ -ATP Synthase-Geared Switch of Metabolism in Human Tumors. Antioxidants and Redox Signaling, 2013, 19, 285-298.	5.4	59
42	Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Reports, 2013, 14, 638-644.	4.5	62
43	The Mitochondrial ATPase Inhibitory Factor 1 Triggers a ROS-Mediated Retrograde Prosurvival and Proliferative Response. Molecular Cell, 2012, 45, 731-742.	9.7	214
44	AMPK and GCN2–ATF4 signal the repression of mitochondria in colon cancer cells. Biochemical Journal, 2012, 444, 249-259.	3.7	56
45	Reverse phase protein microarrays quantify and validate the bioenergetic signature as biomarker in colorectal cancer. Cancer Letters, 2011, 311, 210-218.	7.2	28
46	Post-transcriptional regulation of the mitochondrial H+-ATP synthase: A key regulator of the metabolic phenotype in cancer. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 543-551.	1.0	54
47	The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. Journal of Translational Medicine, 2011, 9, 19.	4.4	61
48	Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis, 2010, 31, 567-576.	2.8	123
49	Up-regulation of the ATPase Inhibitory Factor 1 (IF1) of the Mitochondrial H+-ATP Synthase in Human Tumors Mediates the Metabolic Shift of Cancer Cells to a Warburg Phenotype. Journal of Biological Chemistry, 2010, 285, 25308-25313.	3.4	178
50	The tumor suppressor function of mitochondria: Translation into the clinics. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 1145-1158.	3.8	89
51	Cancer Abolishes the Tissue Type-Specific Differences in the Phenotype of Energetic Metabolism. Translational Oncology, 2009, 2, 138-145.	3.7	53
52	Loss of the Mitochondrial Bioenergetic Capacity Underlies the Glucose Avidity of Carcinomas. Cancer Research, 2007, 67, 9013-9017.	0.9	162
53	Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. Journal of Clinical Investigation, 2007, 117, 719-729.	8.2	246
54	Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H + -ATP synthase. Carcinogenesis, 2006, 27, 925-935.	2.8	91

José M Cuezva

#	Article	IF	CITATIONS
55	Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis, 2005, 26, 2095-2104.	2.8	155
56	The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis, 2004, 25, 1157-1163.	2.8	131
57	Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochemical Journal, 2004, 378, 17-20.	3.7	179
58	The bioenergetic signature of cancer: a marker of tumor progression. Cancer Research, 2002, 62, 6674-81.	0.9	317
59	Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA Journal of Biological Chemistry, 1993, 268, 1868-1875.	3.4	71