Kristin Schirmer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7715418/kristin-schirmer-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 3,401 34 57 h-index g-index citations papers 6.8 5.46 4,033 90 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
88	Anthropogenic Chemicals As Underestimated Drivers of Biodiversity Loss: Scientific and Societal Implications <i>Environmental Science & Environmental </i>	10.3	5
87	Predicting chemical hazard across taxa through machine learning <i>Environment International</i> , 2022 , 163, 107184	12.9	1
86	Digestion of Tire Particles in a Fish Model (): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion. <i>Environmental Science & Environmental Science & Envi</i>	10.3	1
85	Zebrafish early life stages as alternative model to study Tdesigner drugsT Concordance with mammals in response to opioids. <i>Toxicology and Applied Pharmacology</i> , 2021 , 419, 115483	4.6	5
84	A ribonucleoprotein transfection strategy for CRISPR/Cas9-mediated gene editing and single cell cloning in rainbow trout cells. <i>Cell and Bioscience</i> , 2021 , 11, 103	9.8	2
83	New Stable Cell Lines Derived from the Proximal and Distal Intestine of Rainbow Trout () Retain Several Properties Observed In Vivo. <i>Cells</i> , 2021 , 10,	7.9	1
82	Predicting exposure concentrations of chemicals with a wide range of volatility and hydrophobicity in different multi-well plate set-ups. <i>Scientific Reports</i> , 2021 , 11, 4680	4.9	2
81	Cytotoxicity, Accumulation and Translocation of Silver and Silver Sulfide Nanoparticles in contact with Rainbow Trout Intestinal Cells. <i>Aquatic Toxicology</i> , 2021 , 237, 105869	5.1	0
80	Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. <i>Water Research</i> , 2021 , 202, 117415	12.5	4
79	Impact of wastewater on the microbial diversity of periphyton and its tolerance to micropollutants in an engineered flow-through channel system. <i>Water Research</i> , 2021 , 203, 117486	12.5	4
78	Characterization of the ERK1/2 phosphorylation profile in human and fish liver cells upon exposure to chemicals of environmental concern. <i>Environmental Toxicology and Pharmacology</i> , 2021 , 88, 103749	5.8	
77	Toxicity and translocation of Ag, CuO, ZnO and TiO2 nanoparticles upon exposure to fish intestinal epithelial cells. <i>Environmental Science: Nano</i> , 2021 , 8, 2249-2260	7.1	2
76	Biotransformation Capacity of Zebrafish (Danio rerio) Early Life Stages: Functionality of the Mercapturic Acid Pathway. <i>Toxicological Sciences</i> , 2020 , 176, 355-365	4.4	4
75	LC-APCI(-)-MS Determination of 1-Chloro-2,4-dinitrobenzene, a Model Substrate for Glutathione S-Transferases. <i>Journal of the American Society for Mass Spectrometry</i> , 2020 , 31, 467-472	3.5	5
74	Extending the concept of predicting fish acute toxicity in vitro to the intestinal cell line RTgutGC. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2020 , 37, 37-46	4.3	4
73	Characterization of the Mercapturic Acid Pathway, an Important Phase II Biotransformation Route, in a Zebrafish Embryo Cell Line. <i>Chemical Research in Toxicology</i> , 2020 , 33, 2863-2871	4	O
72	Common Gene Expression Patterns in Environmental Model Organisms Exposed to Engineered Nanomaterials: A Meta-Analysis. <i>Environmental Science & Engineerology</i> , 2020 , 54, 335-344	10.3	7

(2018-2019)

71	Fish-gut-on-chip: development of a microfluidic bioreactor to study the role of the fish intestine in vitro. <i>Lab on A Chip</i> , 2019 , 19, 3268-3276	7.2	16
70	Cell-based data to predict the toxicity of chemicals to fish. Commentary on the manuscript by Rodrigues et´al., 2019. Cell-based assays seem not to accurately predict fish short-term toxicity of pesticides. Environmental Pollution 252:476-482. <i>Environmental Pollution</i> , 2019 , 254, 113060	9.3	1
69	Intestinal Fish Cell Barrier Model to Assess Transfer of Organic Chemicals in Vitro: An Experimental and Computational Study. <i>Environmental Science & Enp.</i> 7 (2019), 53, 12062-12070	10.3	4
68	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. <i>Environmental Science: Nano</i> , 2019 , 6, 505-518	7.1	20
67	In Vitro-In Vivo Extrapolation to Predict Bioaccumulation and Toxicity of Chemicals in Fish Using Physiologically Based Toxicokinetic Models. <i>Methods in Pharmacology and Toxicology</i> , 2019 , 1	1.1	1
66	Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish in vitro system. <i>Environmental Science: Nano</i> , 2019 , 6, 1777-1790	7.1	11
65	Rainbow Trout () Intestinal Epithelial Cells as a Model for Studying Gut Immune Function and Effects of Functional Feed Ingredients. <i>Frontiers in Immunology</i> , 2019 , 10, 152	8.4	23
64	Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio). <i>Chemosphere</i> , 2019 , 225, 470-478	8.4	43
63	Repeatability and Reproducibility of the RTgill-W1 Cell Line Assay for Predicting Fish Acute Toxicity. <i>Toxicological Sciences</i> , 2019 , 169, 353-364	4.4	19
62	Time- and concentration-dependent expression of immune and barrier genes in the RTgutGC fish intestinal model following immune stimulation. <i>Fish and Shellfish Immunology</i> , 2019 , 88, 308-317	4.3	7
61	Co-exposure to polystyrene plastic beads and polycyclic aromatic hydrocarbon contaminants in fish gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells derived from rainbow trout (Oncorhynchus mykiss). <i>Environmental Pollution</i> , 2019 , 248, 706-714	9.3	20
60	Improving a fish intestinal barrier model by combining two rainbow trout cell lines: epithelial RTgutGC and fibroblastic RTgutF. <i>Cytotechnology</i> , 2019 , 71, 835-848	2.2	7
59	Hexachlorobenzene exerts genotoxic effects in a humpback whale cell line under stable exposure conditions <i>RSC Advances</i> , 2019 , 9, 39447-39457	3.7	8
58	Lifetime extension of humpback whale skin fibroblasts and their response to lipopolysaccharide (LPS) and a mixture of polychlorinated biphenyls (Aroclor). <i>Cell Biology and Toxicology</i> , 2019 , 35, 387-39	8 ⁷ ·4	11
57	Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2029-2063	3.8	291
56	Biotransformation of Benzo[a]pyrene by Three Rainbow Trout (Onchorhynchus mykiss) Cell Lines and Extrapolation To Derive a Fish Bioconcentration Factor. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 3091-3100	10.3	26
55	Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio). <i>Toxicological Sciences</i> , 2018 , 162, 702-712	4.4	22
54	TransFEr: a new device to measure the transfer of volatile and hydrophobic organic chemicals across an in vitro intestinal fish cell barrier. <i>Analytical Methods</i> , 2018 , 10, 4394-4403	3.2	10

53	A validated algorithm for selecting non-toxic chemical concentrations. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2018 , 35, 37-50	4.3	9
52	Long-term exposure to silver nanoparticles affects periphyton community structure and function. <i>Environmental Science: Nano</i> , 2018 , 5, 1397-1407	7.1	12
51	Cell culture-based biosensing techniques for detecting toxicity in water. <i>Current Opinion in Biotechnology</i> , 2017 , 45, 59-68	11.4	24
50	A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. <i>Cell Biology and Toxicology</i> , 2017 , 33, 539-555	7.4	41
49	Ultrathin Alumina Membranes as Scaffold for Epithelial Cell Culture from the Intestine of Rainbow Trout. <i>ACS Applied Materials & Early Series</i> , 2017 , 9, 9496-9505	9.5	14
48	European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. <i>Science of the Total Environment</i> , 2017 , 601-602, 1849	-1868	106
47	Dose-dependent effects of morphine on lipopolysaccharide (LPS)-induced inflammation, and involvement of multixenobiotic resistance (MXR) transporters in LPS efflux in teleost fish. <i>Environmental Pollution</i> , 2017 , 221, 105-115	9.3	23
46	Clobetasol propionate causes immunosuppression in zebrafish (Danio rerio) at environmentally relevant concentrations. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 138, 16-24	7	14
45	Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 882-897	3.8	68
44	Silver nanoparticleprotein interactions in intact rainbow trout gill cells. <i>Environmental Science:</i> Nano, 2016 , 3, 1174-1185	7.1	35
43	Contribution of hepatic cytochrome CYP1A and metallothionein mRNA abundance to biomonitoring-A case study with European flounder (Platichthys flesus) from the Gulf of Gdaßk. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2016 , 188, 24-9	3.2	3
42	A novel two-compartment barrier model for investigating nanoparticle transport in fish intestinal epithelial cells. <i>Environmental Science: Nano</i> , 2016 , 3, 388-395	7.1	25
41	Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects. <i>Water Research</i> , 2016 , 93, 110-1	1 26 ·5	31
40	An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. <i>Environment International</i> , 2016 , 87, 20-32	12.9	38
39	Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium. <i>Nanotoxicology</i> , 2016 , 10, 1075-83	5.3	11
38	Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC). <i>Nanotoxicology</i> , 2016 , 10, 1526-1534	5.3	31
37	Novel test procedure to evaluate the treatability of wastewater with ozone. <i>Water Research</i> , 2015 , 75, 324-35	12.5	72
36	Silver nanoparticle toxicity and association with the alga Euglena gracilis. <i>Environmental Science:</i> Nano, 2015 , 2, 594-602	7.1	68

(2012-2015)

35	Toxicology across scales: Cell population growth in vitro predicts reduced fish growth. <i>Science Advances</i> , 2015 , 1, e1500302	14.3	27
34	Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment. <i>Aquatic Toxicology</i> , 2015 , 167, 240-7	5.1	21
33	Silver nanoparticle effects on stream periphyton during short-term exposures. <i>Environmental Science & Environmental &</i>	10.3	62
32	Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. <i>Chemosphere</i> , 2015 , 120, 764-77	8.4	138
31	Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. <i>Chemosphere</i> , 2015 , 120, 778-92	8.4	59
30	Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. <i>Nanotoxicology</i> , 2015 , 9, 54-63	5.3	79
29	Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae. <i>Aquatic Toxicology</i> , 2015 , 169, 168-78	5.1	35
28	Systems toxicology approach to understand the kinetics of benzo(a)pyrene uptake, biotransformation, and DNA adduct formation in a liver cell model. <i>Chemical Research in Toxicology</i> , 2014 , 27, 443-53	4	31
27	Effect of TiO2 nanoparticles and UV radiation on extracellular enzyme activity of intact heterotrophic biofilms. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	46
26	Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 3490-5	11.5	121
25	Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes. <i>Water Research</i> , 2014 , 66, 399-410	12.5	34
24	Chemical Aspects of Nanoparticle Ecotoxicology. <i>Chimia</i> , 2014 , 68, 806-11	1.3	18
23	Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?. <i>Toxicological Sciences</i> , 2014 , 141, 218-33	4.4	95
22	Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo toxicity extrapolation. <i>PLoS ONE</i> , 2014 , 9, e92303	3.7	50
21	Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. <i>Environmental Science & Environmental Science</i>	10.3	89
20	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. <i>Regulatory Toxicology and Pharmacology</i> , 2013 , 67, 506-30	3.4	121
19	Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. <i>BMC Biology</i> , 2013 , 11, 69	7.3	114
18	Predicting concentrations of organic chemicals in fish by using toxicokinetic models. <i>Environmental Science & Manp; Technology</i> , 2012 , 46, 3273-80	10.3	98

17	Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss). <i>Aquatic Toxicology</i> , 2011 , 101, 438-46	5.1	53
16	Effects of solvents and dosing procedure on chemical toxicity in cell-based in vitro assays. <i>Environmental Science & Environmental Science & Environm</i>	10.3	55
15	Development of a partition-controlled dosing system for cell assays. <i>Chemical Research in Toxicology</i> , 2010 , 23, 1806-14	4	65
14	Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations. <i>Nanotoxicology</i> , 2010 , 4, 196-206	5.3	24
13	The influence of modes of action and physicochemical properties of chemicals on the correlation between in vitro and acute fish toxicity data. <i>Toxicology in Vitro</i> , 2009 , 23, 1372-9	3.6	35
12	Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. <i>Aquatic Toxicology</i> , 2009 , 93, 91-9	5.1	76
11	Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. <i>Environmental Health Perspectives</i> , 2009 , 117, 530-6	8.4	100
10	Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. <i>Toxicology</i> , 2006 , 224, 163-83	4.4	142
9	Application of Alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. <i>Analytical Biochemistry</i> , 2005 , 344, 76-85	3.1	84
8	Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian cells using fluorescent dyes as indicators of cell viability. <i>Ecotoxicology and Environmental Safety</i> , 2004 , 57, 375-82	7	92
7	The use of fish-derived cell lines for investigation of environmental contaminants. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2003 , Chapter 1, Unit 1.5	1	26
6	Evaluation of a porcine lens and fluorescence assay approach for in vitro ocular toxicological investigations. <i>ATLA Alternatives To Laboratory Animals</i> , 2002 , 30, 505-13	2.1	7
5	Applying whole-water samples directly to fish cell cultures in order to evaluate the toxicity of industrial effluent. <i>Water Research</i> , 2002 , 36, 3727-38	12.5	70
4	Polycyclic aromatic hydrocarbons as inducers of cytochrome P4501A enzyme activity in the rainbow trout liver cell line, RTL-W1, and in primary cultures of rainbow trout hepatocytes. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 632-643	3.8	59
3	Transitory metabolic disruption and cytotoxicity elicited by benzo[a]pyrene in two cell lines from rainbow trout liver. <i>Journal of Biochemical and Molecular Toxicology</i> , 2000 , 14, 262-76	3.4	39
2	Use of fish gill cells in culture to evaluate the cytotoxicity and photocytotoxicity of intact and photomodified creosote. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 1277-1288	3.8	21
1	Use of fish gill cells in culture to evaluate the cytotoxicity and photocytotoxicity of intact and photomodified creosote 1999 , 18, 1277		3